第4章时间序列模型sppt课件.ppt





《第4章时间序列模型sppt课件.ppt》由会员分享,可在线阅读,更多相关《第4章时间序列模型sppt课件.ppt(110页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、第4章时间序列模型sppt课件 Still waters run deep.流静水深流静水深,人静心深人静心深 Where there is life,there is hope。有生命必有希望。有生命必有希望4.14.1 序列相关理论序列相关理论序列相关理论序列相关理论 第第3章章在在对对扰扰动动项项ut的的一一系系列列假假设设下下,讨讨论论了了古古典典线线性性回回归归模模型型的的估估计计、检检验验及及预预测测问问题题。如如果果线线性性回回归归方方程程的的扰扰动动项项ut 满满足足古古典典回回归归假假设设,使使用用OLS所所得得到到的的估估计计量是线性无偏最优的。量是线性无偏最优的。但但是是
2、如如果果扰扰动动项项ut不不满满足足古古典典回回归归假假设设,回回归归方方程程的的估估计计结结果果会会发发生生怎怎样样的的变变化化呢呢?理理论论与与实实践践均均证证明明,扰扰动动项项ut关关于于任任何何一一条条古古典典回回归归假假设设的的违违背背,都都将将导导致致回回归归方方程程的的估估计计结结果果不不再再具具有有上上述述的的良良好好性性质质。因因此此,必必须须建建立立相相关关的的理理论论,解解决决扰扰动动项项不不满满足足古古典典回回归归假假设设所所带带来的模型估计问题。来的模型估计问题。24.1.14.1.1 序列相关及其产生的后果序列相关及其产生的后果序列相关及其产生的后果序列相关及其产生
3、的后果 对于线性回归模型对于线性回归模型 (4.1.1)随机扰动项之间不相关,即无序列相关的基本假设为随机扰动项之间不相关,即无序列相关的基本假设为 (4.1.2)如果扰动项序列如果扰动项序列ut表现为:表现为:(4.1.3)即即对对于于不不同同的的样样本本点点,随随机机扰扰动动项项之之间间不不再再是是完完全全相相互互独独立立的的,而而是是存存在在某某种种相相关关性性,则则认认为为出出现现了了序序列列相相关关性性(serial correlation)。3 EViews提提供供了了检检测测序序列列相相关关和和估估计计方方法法的的工工具具。但但首首先先必必须须排排除除虚虚假假序序列列相相关关。虚
4、虚虚虚假假假假序序序序列列列列相相相相关关关关是是是是指指指指模模模模型型型型的的的的序序序序列列列列相相相相关关关关是是是是由由由由于于于于省省省省略略略略了了了了显显显显著著著著的的的的解解解解释释释释变变变变量量量量而而而而引引引引起起起起的的的的。例例如如,在在生生产产函函数数模模型型中中,如如果果省省略略了了资资本本这这个个重重要要的的解解释释变变量量,资资本本对对产产出出的的影影响响就就被被归归入入随随机机误误差差项项。由由于于资资本本在在时时间间上上的的连连续续性性,以以及及对对产产出出影影响响的的连连续续性性,必必然然导导致致随随机机误误差差项项的的序序列列相相关关。所所以以在
5、在这这种种情情况况下下,要要把把显显著的变量引入到解释变量中。著的变量引入到解释变量中。4.1.24.1.2 序列相关的检验方法序列相关的检验方法序列相关的检验方法序列相关的检验方法 4 EViews提供了以下提供了以下3种检测序列相关的方法。种检测序列相关的方法。1 1D_WD_W统计量检验统计量检验统计量检验统计量检验 Durbin-Watson 统统计计量量(简简称称D_W统统计计量量)用用于于检检验验一一阶阶序序列列相相关关,还还可可估估算算回回归归模模型型邻邻近近残残差差的的线线性性联联系。对于扰动项系。对于扰动项ut建立一阶自回归方程:建立一阶自回归方程:(4.1.6)D_W统计量
6、检验的统计量检验的原假设:原假设:原假设:原假设:=0=0,备选假设是,备选假设是,备选假设是,备选假设是 0 0。5 Dubin-WastonDubin-Waston统计量检验序列相关有三个主要不足:统计量检验序列相关有三个主要不足:统计量检验序列相关有三个主要不足:统计量检验序列相关有三个主要不足:1D-W统计量的扰动项在原假设下依赖于数据矩阵统计量的扰动项在原假设下依赖于数据矩阵X。2回回归归方方程程右右边边如如果果存存在在滞滞后后因因变变量量,D-W检检验验不不再有效。再有效。3仅仅检验是否存在一阶序列相关。仅仅检验是否存在一阶序列相关。其他两种检验序列相关方法:其他两种检验序列相关方
7、法:Q-统计量和统计量和Breush-Godfrey LM检验克服了上述不足,应用于大多数场合。检验克服了上述不足,应用于大多数场合。6 2.2.相关图和相关图和相关图和相关图和Q Q-统计量统计量统计量统计量 1.1.自相关系数自相关系数自相关系数自相关系数 时间序列时间序列ut滞后滞后k阶的自相关系数由下式估计阶的自相关系数由下式估计 (4.2.26)其其中中 是是序序列列的的样样本本均均值值,这这是是相相距距k期期值值的的相相关关系系数数。称称rk为为时时间间序序列列ut的的自自相相关关系系数数,自自相相关关系系数数可可以以部部分分的的刻刻画画一一个个随随机机过过程程的的性性质质。它它告
8、告诉诉我我们们在在序序列列ut的的邻邻近近数数据据之之间间存在多大程度的相关性。存在多大程度的相关性。7 2 2偏自相关系数偏自相关系数偏自相关系数偏自相关系数 偏偏自自相相关关系系数数是是指指在在给给定定ut-1,ut-2,ut-k-1的的条条件件下下,ut与与ut-k之之间间的的条条件件相相关关性性。其其相相关关程程度度用用偏偏自自相相关关系系数数 k,k度量。在度量。在k阶滞后下估计偏相关系数的计算公式如下阶滞后下估计偏相关系数的计算公式如下 (4.2.27)其中:其中:rk 是在是在k阶滞后时的自相关系数估计值。阶滞后时的自相关系数估计值。(4.2.28)这是偏相关系数的一致估计。这是
9、偏相关系数的一致估计。8 我我们们还还可可以以应应用用所所估估计计回回归归方方程程残残差差序序列列的的自自相相关关和和偏偏自自相相关关系系数数(在在本本章章5.2.4节节给给出出相相应应的的公公式式),以以及及Ljung-Box Q-统统计计量量来来检检验验序序列列相相关关。Q-统统计计量量的的表表达式为:达式为:(4.1.7)其中:其中:rj是残差序列的是残差序列的 j 阶自相关系数,阶自相关系数,T是观测值的个数,是观测值的个数,p是设定的滞后阶数是设定的滞后阶数。p阶滞后的阶滞后的Q-统计量的统计量的原假设是:原假设是:原假设是:原假设是:序列不存在序列不存在序列不存在序列不存在p p阶
10、自相关;备选假设为:序列存在阶自相关;备选假设为:序列存在阶自相关;备选假设为:序列存在阶自相关;备选假设为:序列存在p p阶自相关阶自相关阶自相关阶自相关。9 在在在在EViewsEViews软件中的操作方法:软件中的操作方法:软件中的操作方法:软件中的操作方法:在在方方程程工工具具栏栏选选择择View/Residual Tests/correlogram-Q-statistics。EViews将将显显示示残残差差的的自自相相关关和和偏偏自自相相关关函函数数以以及及对对应应于于高高阶阶序序列列相相关关的的Ljung-Box Q统统计计量量。如如如如果果果果残残残残差差差差不不不不存存存存在在
11、在在序序序序列列列列相相相相关关关关,在在在在各各各各阶阶阶阶滞滞滞滞后后后后的的的的自自自自相相相相关关关关和和和和偏偏偏偏自自自自相相相相关关关关值值值值都都都都接近于零。所有的接近于零。所有的接近于零。所有的接近于零。所有的Q-Q-统计量不显著,并且有大的统计量不显著,并且有大的统计量不显著,并且有大的统计量不显著,并且有大的P P值值值值。10例例例例5.1:5.1:利用相关图检验残差序列的相关性利用相关图检验残差序列的相关性利用相关图检验残差序列的相关性利用相关图检验残差序列的相关性 考虑美国的一个投资方程。美国的考虑美国的一个投资方程。美国的GNP和国内私人总和国内私人总投资投资I
12、NV是单位为是单位为10亿美元的名义值,价格指数亿美元的名义值,价格指数P为为GNP的的平减指数平减指数(1972=100),),利息率利息率R为半年期商业票据利息。为半年期商业票据利息。回归方程所采用的变量都是实际回归方程所采用的变量都是实际GNP和实际投资;它们是和实际投资;它们是通过将名义变量除以价格指数得到的,分别用小写字母通过将名义变量除以价格指数得到的,分别用小写字母gnp,inv表示。实际利息率的近似值表示。实际利息率的近似值r则是通过贴现率则是通过贴现率R减去价减去价格指数变化率格指数变化率p得到的。样本区间:得到的。样本区间:1963年年1984年,建立年,建立如下线性回归方
13、程:如下线性回归方程:t=1,2,T 11应用最小二乘法得到的估计方程如下应用最小二乘法得到的估计方程如下:t=(-1.32)(154.25)R2=0.80 D.W.=0.94 12 虚线之间的区域是自相关中正负两倍于估计标准差所夹成的。如虚线之间的区域是自相关中正负两倍于估计标准差所夹成的。如果自相关值在这个区域内,则在显著水平为果自相关值在这个区域内,则在显著水平为5%的情形下与零没有显的情形下与零没有显著区别。著区别。本例本例1阶的自相关系数和偏自相关系数都超出了虚线,说明存在阶的自相关系数和偏自相关系数都超出了虚线,说明存在1阶序列相关。阶序列相关。1阶滞后的阶滞后的Q-统计量的统计量
14、的P值很小,拒绝原假设,残差序列值很小,拒绝原假设,残差序列存在一阶序列相关。存在一阶序列相关。选择选择View/Residual test/Correlogram-Q-statistice会产生如下结果:会产生如下结果:133.3.序列相关的序列相关的序列相关的序列相关的LMLM检验检验检验检验 与与D.W.统计量仅检验扰动项是否存在一阶自相关不统计量仅检验扰动项是否存在一阶自相关不同,同,Breush-Godfrey LM检验(检验(Lagrange multiplier,即拉格朗日乘数检验)也可应用于检验回归方程的残即拉格朗日乘数检验)也可应用于检验回归方程的残差序列是否存在高阶自相关,
15、而且在方程中存在滞后差序列是否存在高阶自相关,而且在方程中存在滞后因变量的情况下,因变量的情况下,LM检验仍然有效。检验仍然有效。LMLM检验原假设为:直到检验原假设为:直到检验原假设为:直到检验原假设为:直到p p阶滞后不存在序列相关,阶滞后不存在序列相关,阶滞后不存在序列相关,阶滞后不存在序列相关,p p为预先定义好的整数;备选假设是:存在为预先定义好的整数;备选假设是:存在为预先定义好的整数;备选假设是:存在为预先定义好的整数;备选假设是:存在p p阶自相关。阶自相关。阶自相关。阶自相关。检验统计量由如下辅助回归计算。检验统计量由如下辅助回归计算。14 (1)估计回归方程,并求出残差)估
16、计回归方程,并求出残差et (4.1.8)(2)检验统计量可以基于如下回归得到)检验统计量可以基于如下回归得到 (4.1.9)这是对原始回归因子这是对原始回归因子Xt 和直到和直到p阶的滞后残差的回归。阶的滞后残差的回归。LMLM检验通常给出两个统计量:检验通常给出两个统计量:检验通常给出两个统计量:检验通常给出两个统计量:F F统计量和统计量和统计量和统计量和T T R R2 2统计量统计量统计量统计量。F统计量是对式(统计量是对式(5.1.9)所有滞后残差联合显著性的一种检)所有滞后残差联合显著性的一种检验。验。TR2统计量是统计量是LM检验统计量,是观测值个数检验统计量,是观测值个数T乘
17、以回乘以回归方程(归方程(5.1.9)的)的R2。一般情况下,。一般情况下,TR2统计量服从渐进统计量服从渐进的的 2(p)分布。分布。15 在在在在E EViewView软件中的操作方法:软件中的操作方法:软件中的操作方法:软件中的操作方法:选选择择View/Residual Tests/Serial correlation LM Test,一一般般地地对对高高阶阶的的,含含有有ARMA误误差差项项的的情情况况执执行行Breush-Godfrey LM。在在滞滞后后定定义义对对话话框框,输输入入要要检检验验序列的最高阶数。序列的最高阶数。16 LM统计量显统计量显示,在示,在5%的显的显著性
18、水平拒绝原著性水平拒绝原假设,回归方程假设,回归方程的残差序列存在的残差序列存在序列相关性。因序列相关性。因此,回归方程的此,回归方程的估计结果不再有估计结果不再有效,必须采取相效,必须采取相应的方式修正残应的方式修正残差的自相关性。差的自相关性。例例例例5.15.1(续续续续)序列相关序列相关序列相关序列相关LMLM检验检验检验检验17 例例例例5.2:5.2:含滞后因变量的回归方程扰动项序列相关的检验含滞后因变量的回归方程扰动项序列相关的检验含滞后因变量的回归方程扰动项序列相关的检验含滞后因变量的回归方程扰动项序列相关的检验 考考虑虑美美国国消消费费CS 和和GDP及及前前期期消消费费之之
19、间间的的关关系系,数数据据期期间间:1947年年第第1季季度度1995年年第第1季季度度,数数据据中中已已消消除除了了季节要素,建立如下线性回归方程:季节要素,建立如下线性回归方程:t=1,2,T 应用最小二乘法得到的估计方程如下:应用最小二乘法得到的估计方程如下:t=(1.93)(3.23)(41.24)R2=0.999 D.W.=1.605 18 如如果果单单纯纯从从显显著著性性水水平平、拟拟合合优优度度及及D.W.值值来来看看,这这个个模模型型是是一一个个很很理理想想的的模模型型。但但是是,由由于于方方程程的的解解释释变变量量存存在在被被解解释释变变量量的的一一阶阶滞滞后后项项,那那么么
20、 D.W.值值就就不不能能作作为为判判断断回回归归方方程程的的残残差差是是否否存存在在序序列列相相关关的的标标准准,如如果果残残差差序序列列存存在在序序列列相相关关,那那么么,显显著著性性水水平平、拟拟合合优优度度和和F统统计计量量将将不不再再可可信信。所所以以,必必须须采采取取本本节节中中介介绍绍的的其其他他检检验验序序列列相相关关的的方方法法检检验验残残差差序序列列的的自自相相关关性性。这这里采用里采用 LM 统计量进行检验统计量进行检验(p=2),得到结果如下得到结果如下:LM统统计计量量显显示示,回回归归方方程程的的残残差差序序列列存存在在明明显显的的序序列相关性。列相关性。19 下面
21、给出残差序列的自相关系数和偏自相关系数,相关图如下:下面给出残差序列的自相关系数和偏自相关系数,相关图如下:本例本例13阶的自相关系数都超出了虚线,说明存在阶的自相关系数都超出了虚线,说明存在3阶序列相关。阶序列相关。各阶滞后的各阶滞后的Q-统计量的统计量的P值都小于值都小于5%,说明在,说明在5%的显著性水平下,的显著性水平下,拒绝原假设,残差序列存在序列相关。拒绝原假设,残差序列存在序列相关。20 4.1.3 4.1.3 扰动项存在序列相关的扰动项存在序列相关的扰动项存在序列相关的扰动项存在序列相关的 线性回归方程的估计与修正线性回归方程的估计与修正线性回归方程的估计与修正线性回归方程的估
22、计与修正 线线性性回回归归模模型型扰扰动动项项序序列列相相关关的的存存在在,会会导导致致模模型型估估计计结结果果的的失失真真。因因此此,必必须须对对扰扰动动项项序序列列的的结结构构给给予予正正确确的的描描述述,以以期期消消除除序序列列相相关关对对模模型型估估计计结结果果带带来来的的不不利影响。利影响。通通常常可可以以用用AR(p)模模型型来来描描述述一一个个平平稳稳序序列列的的自自相相关的结构,定义如下:关的结构,定义如下:(4.1.10)(4.1.11)21 其其中中:ut 是是无无条条件件扰扰动动项项,它它是是回回归归方方程程(4.1.10)的的扰扰动动项项,参参数数 0,1,2,k 是是
23、回回归归模模型型的的系系数数。式式(4.1.11)是是扰扰动动项项ut的的 p 阶阶自自回回归归模模型型,参参数数 1,2,p 是是 p 阶阶自自回回归归模模型型的的系系数数,t 是是无无条条件件扰扰动动项项ut自自回回归归模模型型的的误误差差项项,并并且且是是均均值值为为0,方方差差为为常常数数的的白白噪噪声声序序列列,它它是是因因变变量量真真实实值值和和以以解解释释变变量量及及以以前前预预测测误误差为基础的预测值之差。差为基础的预测值之差。下下面面将将讨讨论论如如何何利利用用AR(p)模模型型修修正正扰扰动动项项的的序序列列相相关关,以以及及用用什什么么方方法法来来估估计计消消除除扰扰动动
24、项项后后方方程程的的未未知知参数。参数。22 1 1修正一阶序列相关修正一阶序列相关修正一阶序列相关修正一阶序列相关 最最简简单单且且最最常常用用的的序序列列相相关关模模型型是是一一阶阶自自回回归归AR(1)模模型型。为为了了便便于于理理解解,先先讨讨论论一一元元线线性性回回归归模模型型,并并且且具具有有一一阶序列相关的情形,即阶序列相关的情形,即p=1的情形:的情形:(4.1.12)(4.1.13)把式(把式(4.1.13)带入式()带入式(4.1.12)中得到)中得到 (4.1.14)2324 2 2修正高阶序列相关修正高阶序列相关修正高阶序列相关修正高阶序列相关 通通常常如如果果残残差差
25、序序列列存存在在p阶阶序序列列相相关关,误误差差形形式式可可以以由由AR(p)过过程程给给出出。对对于于高高阶阶自自回回归归过过程程,可可以以采采取取与与一一阶阶序序列列相相关关类类似似的的方方法法,把把滞滞后后误误差差逐逐项项代代入入,最最终终得得到到一一个个误误差差项项为为白白噪噪声声序序列列,参参数数为为非非线线性性的的回回归归方方程程,并并且采用且采用Gauss-Newton迭代法求得非线性回归方程的参数。迭代法求得非线性回归方程的参数。25 3.3.在在在在EviewsEviews中的操作:中的操作:中的操作:中的操作:打打开开一一个个方方程程估估计计窗窗口口,输输入入方方程程变变量
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 时间 序列 模型 sppt 课件

限制150内