数学中考压轴题旋转问题(经典)答案版(共17页).doc
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_05.gif)
《数学中考压轴题旋转问题(经典)答案版(共17页).doc》由会员分享,可在线阅读,更多相关《数学中考压轴题旋转问题(经典)答案版(共17页).doc(19页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、精选优质文档-倾情为你奉上-CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN数学中考压轴题旋转问题(经典) 答案版专心-专注-专业 旋转拔高练习一、选择题1. (广东)如图,把一个斜边长为2且含有300角的直角三角板ABC绕直角顶点C顺时针旋转900到A1B1C,则在旋转过程中这个三角板扫过的图形的面积是【 】A B C D1、【分析】因为旋转过程中这个三角板扫过的图形的面积分为三部分扇形ACA1、 BCD和ACD 计算即可:在ABC中,ACB=90,BAC=30,AB=2,BC=AB=1,B=90BAC=60。设点B扫过的路线与AB的交点为D,连接CD,BC=DC,
2、BCD是等边三角形。BD=CD=1。点D是AB的中点。S。 故选D。2. (湖北)如图,O是正ABC内一点,OA=3,OB=4,OC=5,将线段BO以点B为旋转中心逆时针旋转60得到线段BO,下列结论:BOA可以由BOC绕点B逆时针旋转60得到;点O与O的距离为4;AOB=150;其中正确的结论是【 】A B C D 2【分析】正ABC,AB=CB,ABC=600。线段BO以点B为旋转中心逆时针旋转60得到线段BO,BO=BO,OAO=600。OBA=600ABO=OBA。BOABOC。BOA可以由BOC绕点B逆时针旋转60得到。故结论正确。 连接OO,BO=BO,OAO=600,OBO是等边
3、三角形。OO=OB=4。故结论正确。在AOO中,三边长为OA=OC=5,OO=OB=4,OA=3,是一组勾股数,AOO是直角三角形。AOB=AOOOOB =900600=150。故结论正确。故结论错误。如图所示,将AOB绕点A逆时针旋转60,使得AB与AC重合,点O旋转至O点易知AOO是边长为3的等边三角形,COO是边长为3、4、5直角三角形。则。故结论正确。综上所述,正确的结论为:。故选A。3. (四川)如图,P是等腰直角ABC外一点,把BP绕点B顺时针旋转90到BP,已知APB=135,PA:PC=1:3,则PA:PB=【 】。A1: B1:2 C:2 D1:3、【分析】如图,连接AP,B
4、P绕点B顺时针旋转90到BP,BP=BP,ABP+ABP=90。又ABC是等腰直角三角形,AB=BC,CBP+ABP=90,ABP=CBP。在ABP和CBP中, BP=BP,ABP=CBP,AB=BC ,ABPCBP(SAS)。AP=PC。PA:PC=1:3,AP=3PA。连接PP,则PBP是等腰直角三角形。BPP=45,PP= 2 PB。APB=135,APP=135-45=90,APP是直角三角形。设PA=x,则AP=3x,在RtAPP中,。在RtAPP中,。,解得PB=2x。PA:PB=x:2x=1:2。 故选B。4. (贵州)点P是正方形ABCD边AB上一点(不与A、B重合),连接PD
5、并将线段PD绕点P顺时针旋转90,得线段PE,连接BE,则CBE等于【 】A75 B60 C45 D304【分析】过点E作EFAF,交AB的延长线于点F,则F=90,四边形ABCD为正方形,AD=AB,A=ABC=90。ADP+APD=90。由旋转可得:PD=PE,DPE=90,APD+EPF=90。ADP=EPF。在APD和FEP中,ADP=EPF,A=F,PD=PE,APDFEP(AAS)。AP=EF,AD=PF。又AD=AB,PF=AB,即AP+PB=PB+BF。AP=BF。BF=EF又F=90,BEF为等腰直角三角形。EBF=45。又CBF=90,CBE=45。故选C。【答案】C。5.
6、 (广西)如图,等边ABC的周长为6,半径是1的O从与AB相切于点D的位置出发,在ABC外部按顺时针方向沿三角形滚动,又回到与AB相切于点D的位置,则O自转了:【 】A2周B3周C4周D5周5【分析】该圆运动可分为两部分:在三角形的三边运动以及绕过三角形的三个角,分别计算即可得到圆的自传周数:O在三边运动时自转周数:62 =3:O绕过三角形外角时,共自转了三角形外角和的度数:360,即一周。O自转了3+1=4周。故选C。二、填空题6. (四川)如图,四边形ABCD中,BAD=BCD=900,AB=AD,若四边形ABCD的面积是24cm2.则AC长是 cm. 6【分析】如图,将ADC旋转至ABE
7、处,则AEC的面积和四边形ABCD的面积一样多为24cm2,,这时三角形AEC为等腰直角三角形,作边EC上的高AF,则AF=EC=FC, SAEC= AFEC=AF2=24 。AF2=24。AC2=2AF2=48 AC=4。7. (江西南昌)如图,正方形ABCD与正三角形AEF的顶点A重合,将AEF绕顶点A旋转,在旋转过程中,当BE=DF时,BAE的大小可以是 7【分析】正三角形AEF可以在正方形的内部也可以在正方形的外部,所以要分两种情况分别求解: 当正三角形AEF在正方形ABCD的内部时,如图1,正方形ABCD与正三角形AEF的顶点A重合,AB=AD,AE=AF。当BE=DF时,在ABE和
8、ADF中,AB=AD,BE=DF,AE=AF,ABEADF(SSS)。BAE=FAD。EAF=60,BAE+FAD=30。BAE=FAD=15。当正三角形AEF在正方形ABCD的外部,顺时针旋转小于1800时,如图2,同上可得ABEADF(SSS)。BAE=FAD。EAF=60,BAF=DAE。900600BAFDAE=3600,BAF=DAE=105。BAE=FAD=165。当正三角形AEF在正方形ABCD的外部,顺时针旋转大于1800时,如图3,同上可得ABEADF(SSS)。BAE=FAD。EAF=60,BAE=90,90DAE=60DAE,这是不可能的。此时不存在BE=DF的情况。综上
9、所述,在旋转过程中,当BE=DF时,BAE的大小可以是15或165。8. (吉林省)如图,在等边ABC中,D是边AC上一点,连接BD将BCD绕点B逆时针旋转60得到BAE,连接ED若BC=10,BD=9,则AED的周长是_ _.8【分析】BCD绕点B逆时针旋转60得到BAE, 根据旋转前、后的图形全等的旋转性质,得,CD= AE,BD=BE。ABC是等边三角形,BC=10,AC= BC=10。AEAD=AC=10。又旋转角DBE=600,DBE是等边三角形。DE=BD=9。AED的周长=DEAEAD=910=19。三、解答题9. (北京市)在中,M是AC的中点,P是线段BM上的动点,将线段PA
10、绕点P顺时针旋转得到线段PQ。(1) 若且点P与点M重合(如图1),线段CQ的延长线交射线BM于点D,请补全图形,并写出CDB的度数;(2) 在图2中,点P不与点B,M重合,线段CQ的延长线与射线BM交于点D,猜想CDB的大小(用含的代数式表示),并加以证明;(3) 对于适当大小的,当点P在线段BM上运动到某一位置(不与点B,M重合)时,能使得线段CQ的延长线与射线BM交于点D,且PQ=QD,请直接写出的范围。9【答案】解:(1)补全图形如下:CDB=30。(2)作线段CQ的延长线交射线BM于点D,连接PC,AD,AB=BC,M是AC的中点,BMAC。AD=CD,AP=PC,PD=PD。在AP
11、D与CPD中,AD=CD, PD=PD, PA=PCAPDCPD(SSS)。AP=PC,ADB=CDB,PAD=PCD。又PQ=PA,PQ=PC,ADC=2CDB,PQC=PCD=PAD。PAD+PQD=PQC+PQD=180。APQ+ADC=360(PAD+PQD)=180。ADC=180APQ=1802,即2CDB=1802。CDB=90。(3)4560。【分析】(1)利用图形旋转的性质以及等边三角形的判定得出CMQ是等边三角形,即可得出答案:BA=BC,BAC=60,M是AC的中点,BMAC,AM=AC。将线段PA绕点P顺时针旋转2得到线段PQ,AM=MQ,AMQ=120。 CM=MQ,
12、CMQ=60。CMQ是等边三角形。ACQ=60。CDB=30。(2)首先由已知得出APDCPD,从而得出PAD+PQD=PQC+PQD=180,即可求出。(3)由(2)得出CDB=90,且PQ=QD,PAD=PCQ=PQC=2CDB=1802。点P不与点B,M重合,BADPADMAD。21802,4560。10. (福建)在平面直角坐标系中,矩形OABC如图所示放置,点A在x轴上,点B的坐标为(m,1)(m0),将此矩形绕O点逆时针旋转90,得到矩形OABC(1)写出点A、A、C的坐标;(2)设过点A、A、C的抛物线解析式为y=ax2+bx+c,求此抛物线的解析式;(a、b、c可用含m的式子表
13、示)(3)试探究:当m的值改变时,点B关于点O的对称点D是否可能落在(2)中的抛物线上?若能,求出此时m的值 10【答案】解:(1)四边形ABCD是矩形,点B的坐标为(m,1)(m0),A(m,0),C(0,1)。矩形OABC由矩形OABC旋转90而成,A(0,m),C(1,0)。(2)设过点A、A、C的抛物线解析式为y=ax2bxc,A(m,0),A(0,m),C(1,0),解得。此抛物线的解析式为:y=x2(m1)xm。(3)点B与点D关于原点对称,B(m,1),点D的坐标为:(m,1),假设点D(m,1)在(2)中的抛物线上,0=(m)2(m1)(m)m=1,即2m22m1=0,=(2)
14、2422=40,此方程无解。点D不在(2)中的抛物线上。【分析】(1)先根据四边形ABCD是矩形,点B的坐标为(m,1)(m0),求出点A、C的坐标,再根据图形旋转的性质求出A、C的坐标即可。(2)设过点A、A、C的抛物线解析式为y=ax2+bx+c,把A、A、C三点的坐标代入即可得出abc的值,进而得出其抛物线的解析式。(3)根据关于原点对称的点的坐标特点用m表示出D点坐标,把D点坐标代入抛物线的解析式看是否符合即可。11. (江苏)(1)如图1,在ABC中,BA=BC,D,E是AC边上的两点,且满足DBE=ABC(0CBEABC)。以点B为旋转中心,将BEC按逆时针方向旋转ABC,得到BE
15、A(点C与点A重合,点E到点E处),连接DE。求证:DE=DE. (2)如图2,在ABC中,BA=BC,ABC=90,D,E是AC边上的两点,且满足DBE=ABC(0CBE45).求证:DE2=AD2+EC2.11【答案】证明:(1)BEA是BEC按逆时针方向旋转ABC得到, BE=BE,EBA=EBC。DBE=ABC,ABDEBC =ABC。 ABDEBA =ABC,即EBD=ABC。EBD=DBE。在EBD和EBD中,BE=BE,EBD=DBE,BD=BD,EBDEBD(SAS)。DE=DE。(2)以点B为旋转中心,将BEC按逆时针方向旋转ABC=90,得到BEA(点C与点A重合,点E到点
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 数学 中考 压轴 旋转 问题 经典 答案 17
![提示](https://www.taowenge.com/images/bang_tan.gif)
限制150内