高二数学圆锥曲线与方程教案173154.pdf
《高二数学圆锥曲线与方程教案173154.pdf》由会员分享,可在线阅读,更多相关《高二数学圆锥曲线与方程教案173154.pdf(22页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、欢迎您阅读并下载本文档,本文档来源于互联网整理,如有侵权请联系删除!我们将竭诚为您提供优质的文档!1 富县高级中学集体备课教案 年级:高二 科目:数学 授课人:课 题 椭圆及其标准方程 第 1 课时 三维目标 1、了解椭圆的实际背景,掌握椭圆的定义及其标准方程。2、通过椭圆的概念引入椭圆的标准方程的推导,培养学生的分析探索能力,熟练掌握解决解析问题的方法坐标法。3、通过对椭圆的定义及标准方程的学习,渗透数形结合的思想,让学生体会运动变化、对立统一的思想,提高对各种知识的综合运用能力 重 点 椭圆的定义和椭圆的标准方程 中心发言人 难 点 椭圆的标准方程的推导 教 具 课 型 常规课 课时安排-
2、1-课时 教 法 学 法 个人主页 教 学 过 程 (一)椭圆概念的引入 取一条一定长的细绳,把它的两端固定在画图板上的 F1和 F2两点(如图 2-13),当绳长大于 F1和 F2的距离时,用铅笔尖把绳子拉紧,使笔尖在图板上慢慢移动,就可以画出一个椭圆 教师进一步追问:“椭圆,在哪些地方见过?”有的同学说:“立体几何中圆的直观图”有的同学说:“人造卫星运行轨道”等 欢迎您阅读并下载本文档,本文档来源于互联网整理,如有侵权请联系删除!我们将竭诚为您提供优质的文档!2 在此基础上,引导学生概括椭圆的定义:平面内到两定点 F1、F2的距离之和等于常数(大于|F1F2|)的点的轨迹叫做椭圆这两个定点
3、叫做椭圆的焦点,两焦点的距离叫做焦距 学生开始只强调主要几何特征到两定点 F1、F2的距离之和等于常数、教师在演示中要从两个方面加以强调:(1)将穿有铅笔的细线拉到图板平面外,得到的不是椭圆,而是椭球形,使学生认识到需加限制条件:“在平面内”(2)这里的常数有什么限制吗?教师边演示边提示学生注意:若常数=|F1F2|,则是线段 F1F2;若常数|F1F2|,则轨迹不存在;若要轨迹是椭圆,还必须加上限制条件:“此常数大于|F1F2|”(二)椭圆标准方程的推导 1标准方程的推导 由椭圆的定义,可以知道它的基本几何特征,但对椭圆还具有哪些性质,我们还一无所知,所以需要用坐标法先建立椭圆的方程 欢迎您
4、阅读并下载本文档,本文档来源于互联网整理,如有侵权请联系删除!我们将竭诚为您提供优质的文档!3 如何建立椭圆的方程?根据求曲线方程的一般步骤,可分:(1)建系设点;(2)点的集合;(3)代数方程;(4)化简方程等步骤(1)建系设点 建立坐标系应遵循简单和优化的原则,如使关键点的坐标、关键几何量(距离、直线斜率等)的表达式简单化,注意充分利用图形的对称性,使学生认识到下列选取方法是恰当的 以两定点 F1、F2的直线为 x 轴,线段 F1F2的垂直平分线为 y 轴,建立直角坐标系(如图 2-14)设|F1F2|=2c(c0),M(x,y)为椭圆上任意一点,则有 F1(-1,0),F2(c,0)(2
5、)点的集合 由定义不难得出椭圆集合为P=M|MF1|+|MF2|=2a(3)代数方程 欢迎您阅读并下载本文档,本文档来源于互联网整理,如有侵权请联系删除!我们将竭诚为您提供优质的文档!4(4)化简方程(学生板演,教师点拨)2两种标准方程的比较(引导学生归纳)0)、F2(c,0),这里 c2=a2-b2;-c)、F2(0,c),这里 c2=a2+b2,只须将(1)方程的 x、y 互换即可得到 教师指出:在两种标准方程中,a2b2,可以根据分母的大小来判定焦点在哪一个坐标轴上(三)例题讲解 例、平面内两定点的距离是 8,写出到这两定点的距离的和是 10 的点的轨迹的方程 分析:先根据题意判断轨迹,
6、再建立直角坐标系,采用待定系数法得出轨迹方程 解:这个轨迹是一个椭圆,两个定点是焦点,用 F1、F2表示取过点 F1和 F2的直线为 x 轴,线段 F1F2的垂直平分线为 y 轴,建立直角坐标系 2a=10,2c=8 a=5,c=4,b2=a2-c2=25-16=9b=3 因此,这个椭圆的标准方程是 欢迎您阅读并下载本文档,本文档来源于互联网整理,如有侵权请联系删除!我们将竭诚为您提供优质的文档!5 思考:焦点 F1、F2放在 y 轴上呢?(四)课堂练习:(五)小结 1定义:椭圆是平面内与两定点 F1、F2的距离的和等于常数(大于|F1F2|)的点的轨迹 3图形 教 后 反 思 备课组长签字:
7、陈天波 年 月 日 附注:课型填“常规课”或“复习课”或“习题课”或“多媒体课”。欢迎您阅读并下载本文档,本文档来源于互联网整理,如有侵权请联系删除!我们将竭诚为您提供优质的文档!6 富县高级中学集体备课教案 年级:高二 科目:数学 授课人:课 题 椭圆的简单性质 第 1 课时 三维目标 1、通过椭圆标准方程的讨论,使学生掌握椭圆的几何性质,能正确地画出椭圆的图形,并能根据几何性质解决一些简单的问题,从而培养我们的分析、归纳、推理等能力。2、掌握利用方程研究曲线性质的基本方法,进一步体会数形结合的思想。3、通过本小节的学习,进一步体会方程与曲线的对应关系,感受圆锥曲线在刻画现实世界和解决实际问
8、题中的作用 重 点 椭圆的几何性质及初步运用 中心发言人 难 点 椭圆离心率的概念的理解 教 具 课 型 常规课 课时安排-1-课时 教 法 学 法 个人主页 教 学 过 程 (一)复习提问 1椭圆的定义是什么?2椭圆的标准方程是什么?(二)几何性质 根据曲线的方程研究曲线的几何性质,并正确地画出它的图形,是解析几何的基本问题之一。1、范围 即|x|a,|y|b,这说明椭圆在直线 x=a 和直线y=b 所围成的矩形里,注意结合图形讲解,并指出描点画图时,就不能取范围以外的点 2对称性 先请大家阅读课本椭圆的几何性质 2 设问:为什么“把 x 换成-x,或把 y 换成-y?,或把x、y 同时换成
9、-x、-y 时,方程都不变,所以图形关于 y轴、x 轴或原点对称的”呢?欢迎您阅读并下载本文档,本文档来源于互联网整理,如有侵权请联系删除!我们将竭诚为您提供优质的文档!7 事实上,在曲线的方程里,如果把 x 换成-x 而方程不变,那么当点 P(x,y)在曲线上时,点 P 关于 y 轴的对称点 Q(-x,y)也在曲线上,所以曲线关于 y 轴对称类似可以证明其他两个命题 同时向学生指出:如果曲线具有关于 y 轴对称、关于x 轴对称和关于原点对称中的任意两种,那么它一定具有另一种对称如:如果曲线关于 x 轴和原点对称,那么它一定关于 y 轴对称 事实上,设 P(x,y)在曲线上,因为曲线关于 x
10、轴对称,所以点 P1(x,-y)必在曲线上又因为曲线关于原点对称,所以 P1关于原点对称点 P2(-x,y)必在曲线上因P(x,y)、P2(-x,y)都在曲线上,所以曲线关于 y 轴对称 最后指出:x 轴、y 轴是椭圆的对称轴,原点是椭圆的对称中心即椭圆中心 3顶点 只须令 x=0,得 y=b,点 B1(0,-b)、B2(0,b)是椭圆和 y 轴的两个交点;令 y=0,得 x=a,点 A1(-a,0)、A2(a,0)是椭圆和 x 轴的两个交点强调指出:椭圆有四个顶点 A1(-a,0)、A2(a,0)、B1(0,-b)、B2(0,b)4离心率 教师直接给出椭圆的离心率的定义:等到介绍椭圆的第二定
11、义时,再讲清离心率 e 的几何意义 先分析椭圆的离心率 e 的取值范围:ac0,0e1 再结合图形分析离心率的大小对椭圆形状的影响:(2)当 e 接近 0 时,c 越接近 0,从而 b 越接近 a,因此椭圆接近圆;(3)当 e=0 时,c=0,a=b 两焦点重合,椭圆的标准方程成为 x2+y2=a2,图形就是圆了(三)应用 例 1、求椭圆 16x2+25y2=400 的长轴和短轴的长、离心率、焦点和顶点的坐标,并用描点法画出它的图形 (四)课时小结 欢迎您阅读并下载本文档,本文档来源于互联网整理,如有侵权请联系删除!我们将竭诚为您提供优质的文档!8 解法研究图形的性质是通过对方程的讨论进行的,
12、同一曲线由于坐标系选取不同,方程的形式也不同,但是最后得出的性质是一样的,即与坐标系的选取无关前面我们着重分析了第一个标准方程的椭圆的性质,类似可以理解第二个标准方程的椭圆的性质布置学生最后小结下列表格:教 后 反 思 备课组长签字:陈天波 年 月 日 附注:课型填“常规课”或“复习课”或“习题课”或“多媒体课”。欢迎您阅读并下载本文档,本文档来源于互联网整理,如有侵权请联系删除!我们将竭诚为您提供优质的文档!9 富县高级中学集体备课教案 年级:高二 科目:数学 授课人:课 题 抛物线及其标准方程 第 1 课时 三维目标 1、使学生掌握抛物线的定义,理解焦点、准线方程的几何意义,能够根据已知条
13、件写出抛物线的标准方程。2、掌握开口向右的抛物线的标准方程的推导过程,进一步理解求曲线的方法坐标法;通过本节课的学习,学生在解决问题时应具有观察、类比、分析和计算的能力。3、通过一个简单实验引入抛物线的定义,可以对学生进行理论来源于实践的辩证唯物主义思想教育 重 点 抛物线的定义和标准方程 中心发言人 难 点 抛物线的标准方程的推导 教 具 课 型 常规课 课时安排-1-课时 教 法 学 法 个人主页 教 学 过 程 (一)引入课题 请大家思考两个问题:问题 1:同学们对抛物线已有了哪些认识?在物理中,抛物线被认为是抛射物体的运行轨道;在数学中,抛物线是二次函数的图象?问题 2:在二次函数中研
14、究的抛物线有什么特征?在二次函数中研究的抛物线,它的对称轴是平行于 y轴、开口向上或开口向下两种情形 引导学生进一步思考:如果抛物线的对称轴不平行于y 轴,那么就不能作为二次函数的图象来研究了今天,我们突破函数研究中这个限制,从更一般意义上来研究抛物线(二)抛物线的定义 1回顾 平面内与一个定点F的距离和一条定直线l的距离的比是常数 e 的轨迹,当 0e1 时是椭圆,那么当 e=1时,它又是什么曲线?2简单实验 如图 2-29,把一根直尺固定在画图板内直线 l 的位置上,一块三角板的一条直角边紧靠直尺的边缘;把一条绳子的一端固定于三角板另一条直角边上的点 A,截取绳子的长等于 A 到直线 l
15、的距离 AC,并且把绳子另一端固定在图板上的一点 F;用一支铅笔扣着绳子,紧靠着三角板的这条直角边把绳子绷紧,然后使三角板紧靠着直尺左 欢迎您阅读并下载本文档,本文档来源于互联网整理,如有侵权请联系删除!我们将竭诚为您提供优质的文档!10 右滑动,这样铅笔就描出一条曲线,这条曲线叫做抛物线反复演示后,请同学们来归纳抛物线的定义,教师总结 3定义 这样,可以把抛物线的定义概括成:平面内与一定点F和一条定直线l的距离相等的点的轨迹叫做抛物线(定点 F 不在定直线 l 上)定点 F 叫做抛物线的焦点,定直线 l 叫做抛物线的准线(三)抛物线的标准方程 设定点 F 到定直线 l 的距离为 p(p 为已
16、知数且大于0)由于焦点和准线在坐标系下的不同分布情况,抛物线的标准方程有四种情形(列表如下):欢迎您阅读并下载本文档,本文档来源于互联网整理,如有侵权请联系删除!我们将竭诚为您提供优质的文档!11 (四)四种标准方程的应用 例题:(1)已知抛物线的标准方程是 y2=6x,求它的焦点坐标和准线方程;(2)已知抛物线的焦点坐标是 F(0,-2),求它的标准方程 方程是 x2=-8y 练习:1.根据下列所给条件,写出抛物线的标准方程:(1)焦点是 F(3,0);(3)焦点到准线的距离是 2 2求下列抛物线的焦点坐标和准线方程:(1)x2=2y;(2)4x2+3y=0;(3)2y2+5x=0;(4)y
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 高二数学 圆锥曲线与方程教案173154 数学 圆锥曲线 方程 教案 173154
限制150内