2011考研数学一真题及答案解析.pdf
《2011考研数学一真题及答案解析.pdf》由会员分享,可在线阅读,更多相关《2011考研数学一真题及答案解析.pdf(15页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、欢迎您阅读并下载本文档,本文档来源于互联网,如有侵权请联系删除!我们将竭诚为您提供优质的文档!2011 年全国硕士研究生入学统一考试数学一试题 一、选择题:18 小题,每小题 4 分,共 32 分,下列每题给出的四个选项中,只有一个选项符合题目要求,请将所选项前的字母填在答题纸指定位置上(1)曲线234(1)(2)(3)(4)yxxxx的拐点是()(A)(1,0)(B)(2,0)(C)(3,0)(D)(4,0)(2)设数列 na单调减少,lim0nna,1(1,2,)nnkkSan 无界,则幂级数1(1)nnnax的收敛域为()(A)(1,1 (B)1,1)(C)0,2)(D)(0,2(3)设
2、 函 数()f x具 有 二 阶 连 续 导 数,且()0f x,(0)0f,则 函 数()ln()zf xf y在点(0,0)处取得极小值的一个充分条件是()(A)(0)1f,(0)0f (B)(0)1f,(0)0f (C)(0)1f,(0)0f (D)(0)1f,(0)0f (4)设40lnsinIxdx,40lncotJxdx,40lncosKxdx,则,I J K的大小关系是()(A)IJK (B)IKJ(C)JIK (D)KJI(5)设A为 3 阶矩阵,将A的第 2 列加到第 1 列得矩阵B,再交换B的第 2 行与第 3行得单位矩阵,记1100110001P,2100001010P,
3、则A()(A)12PP (B)112P P (C)21P P (D)121P P(6)设1234(,)A 是 4 阶矩阵,*A为A的伴随矩阵,若(1,0,1,0)T是方程组0Ax 的一个基础解系,则*0A x 的基础解系可为()(A)13,(B)12,(C)123,(D)234,欢迎您阅读并下载本文档,本文档来源于互联网,如有侵权请联系删除!我们将竭诚为您提供优质的文档!(7)设1()F x,2()F x为两个分布函数,其相应的概率密度1()f x,2()fx是连续函数,则必为概率密度的是()(A)12()()f x fx (B)212()()fx F x(C)12()()f x F x (D
4、)1221()()()()f x F xfx F x(8)设随机变量X与Y相互独立,且()E X与()E Y存在,记max,UX Y,min,VX Y则()E UV()(A)()()E UE V (B)()()E XE Y(C)()()E UE Y (D)()()E XE V 二、填空题:914 小题,每小题 4 分,共 24 分,请将答案写在答题纸指定位置上(9)曲线0tan(0)4xytdtx的弧长s (10)微分方程cosxyyex满足条件(0)0y的解为y (11)设函数20sin(,)1xytF x ydtt,则2202xyFx (12)设L是柱面方程221xy与平面zxy的交线,从
5、z轴正向往z轴负向看去为逆时针方向,则曲线积分22Lyxzdxxdydz (13)若二次曲面的方程22232224xyzaxyxzyz,经过正交变换化为221144yz,则a (14)设 二 维 随 机 变 量,X Y服 从 正 态 分 布22,;,;0N ,则2E XY=三、解答题:1523 小题,共 94 分请将解答写在答题纸指定的位置上解答应写出文字说明、证明过程或演算步骤(15)(本题满分 10 分)求极限110ln(1)lim()xexxx 欢迎您阅读并下载本文档,本文档来源于互联网,如有侵权请联系删除!我们将竭诚为您提供优质的文档!(16)(本题满分 9 分)设函数(,()zf x
6、y yg x,其中函数f具有二阶连续偏导数,函数()g x可导且在1x 处取得极值(1)1g,求211xyzx y (17)(本题满分 10 分)求方程arctan0kxx不同实根的个数,其中k为参数 (18)(本题满分 10 分)()证明:对任意的正整数n,都有111ln(1)1nnn 成立()设111ln(1,2,)2nan nn,证明数列 na收敛 (19)(本题满分 11 分)已 知 函 数(,)f x y具 有 二 阶 连 续 偏 导 数,且(1,)0fy,(,1)0f x,(,)Df x y dxdya,其中(,)|01,01Dx yxy,计算二重积分(,)xyDIxyfx y d
7、xdy (20)(本题满分 11 分)设向量组123(1,0,1)(0,1,1)(1,3,5)TTT,不能由向量组1(1,1,1)T,2(1,2,3)T,3(3,4,)Ta线性表示 (I)求a的值;(II)将123,由123,线性表示 (21)(本题满分 11 分)欢迎您阅读并下载本文档,本文档来源于互联网,如有侵权请联系删除!我们将竭诚为您提供优质的文档!A为三阶实对称矩阵,A的秩为 2,即 2r A,且111100001111A(I)求A的特征值与特征向量;(II)求矩阵A(22)(本题满分 11 分)设随机变量X与Y的概率分布分别为 X 0 1 P 1/3 2/3 Y 1 0 1 P 1
8、/3 1/3 1/3 且221P XY(I)求二维随机变量(,)X Y的概率分布;(II)求ZXY的概率分布;(III)求X与Y的相关系数XY (23)(本题满分 11 分)设12,nXXX为来自正态总体20(,)N的简单随机样本,其中0已知,20未知X和2S分别表示样本均值和样本方差(I)求参数2的最大似然估计量2;(II)计算2()E和2()D 欢迎您阅读并下载本文档,本文档来源于互联网,如有侵权请联系删除!我们将竭诚为您提供优质的文档!2011 年全国硕士研究生入学统一考试数学一试题答案 一、选择题:18 小题,每小题 4 分,共 32 分,下列每题给出的四个选项中,只有一个选项符合题目
9、要求,请将所选项前的字母填在答题纸指定位置上(1)【答案】(C)【解析】记1111,1,0yxyy,2222(2),2(2),2,yxyxy 32333(3),3(3),6(3),yxyxyx 432444(4),4(4),12(4),yxyxyx(3)()yxP x,其中(3)0P,30 xy,在3x 两侧,二阶导数符号变化,故选(C)(2)【答案】(C)【解析】观察选项:(A),(B),(C),(D)四个选项的收敛半径均为 1,幂级数收敛区间的中心在1x 处,故(A),(B)错误;因为 na单调减少,lim0nna,所以0na,所以1nna为正项级数,将2x 代入幂级数得1nna,而已知S
10、n=1nkka无界,故原幂级数在2x 处发散,(D)不正确当0 x 时,交错级数1(1)nnna满足莱布尼茨判别法收敛,故0 x 时1(1)nnna收敛故正确答案为(C)(3)【答案】(A)【解析】(0,0)(0,0)|()ln()|(0)ln(0)0zfxf yffx,(0,0)(0,0)()|()|(0)0,()zfyf xfyf y故(0)0f,2(0,0)(0,0)2|()ln()|(0)ln(0)0,zAfxf yffx 22(0,0)(0,0)()(0)|()|0,()(0)zfyfBfxx yf yf 222(0,0)(0,0)22()()()(0)|()|(0)(0).()(0
11、)zfy f yfyfCf xffyfyf 又22(0)ln(0)0,ACBff故(0)1,(0)0ff (4)【答案】(B)【解析】因为04x时,0sincos1cotxxx,欢迎您阅读并下载本文档,本文档来源于互联网,如有侵权请联系删除!我们将竭诚为您提供优质的文档!又因ln x是单调递增的函数,所以lnsinlncoslncotxxx 故正确答案为(B)(5)【答案】(D)【解析】由于将A的第 2 列加到第 1 列得矩阵B,故 100110001AB,即1APB,11ABP 由于交换B的第 2 行和第 3 行得单位矩阵,故 100001010BE,即2,P BE故122BPP因此,121
12、AP P,故选(D)(6)【答案】(D)【解析】由于(1,0,1,0)T是方程组0Ax 的一个基础解系,所以(1,0,1,0)0TA,且()4 13r A ,即130,且0A 由 此 可 得*|A AA EO,即*1234(,)AO ,这说明1234,是*0A x 的解 由于()3r A,130,所以234,线性无关又由于()3r A,所以*()1r A,因此*0A x 的基础解系中含有4 13 个线性无关的解向量而234,线性无关,且为*0A x 的解,所以234,可作为*0A x 的基础解系,故选(D)(7)【答案】(D)【解析】选项(D)1122()()()()fx Fxfx Fxdx2
13、211()()()()F x dF xF x dFx 21()()d F x Fx12()()|F x F x1 所以1221()()f F xf F x为概率密度 (8)【答案】(B)【解析】因为,max,XXYUX YYXY ,min,YXYVX YXXY 所以,UVXY,于是()()E UVE XY()()E X E Y 欢迎您阅读并下载本文档,本文档来源于互联网,如有侵权请联系删除!我们将竭诚为您提供优质的文档!二、填空题:914 小题,每小题 4 分,共 24 分,请将答案写在答题纸指定位置上(9)【答案】ln 12【解析】选取x为参数,则弧微元 2211tansecdsydxxdx
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 2011 考研 数学 一真题 答案 解析
限制150内