(经典)小学数学知识点归纳梳理(特全).pdf
《(经典)小学数学知识点归纳梳理(特全).pdf》由会员分享,可在线阅读,更多相关《(经典)小学数学知识点归纳梳理(特全).pdf(16页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、仅供个人参考For personal use only in study and research;not forFor personal use only in study and research;not forcommercial usecommercial use(经典)小学一至六年级数学知识点纵向梳理(经典)小学一至六年级数学知识点纵向梳理第一章数和数的运算一概念(一)整数1 整数的意义自然数和 0 都是整数。2 自然数我们在数物体的时候,用来表示物体个数的1,2,3叫做自然数。一个物体也没有,用 0 表示。0 也是自然数。3 计数单位一(个)、十、百、千、万、十万、百万、千万、亿都
2、是计数单位。每相邻两个计数单位之间的进率都是10。这样的计数法叫做十进制计数法。4 数位计数单位按照一定的顺序排列起来,它们所占的位置叫做数位。5 数的整除整数 a 除以整数 b(b 0),除得的商是整数而没有余数,我们就说a 能被 b 整除,或者说b 能整除 a。如果数 a 能被数 b(b 0)整除,a 就叫做 b 的倍数,b 就叫做 a 的约数(或 a 的因数)。倍数和约数是相互依存的。因为 35 能被 7 整除,所以 35 是 7 的倍数,7 是 35 的约数。一个数的约数的个数是有限的,其中最小的约数是1,最大的约数是它本身。例如:10 的约数有 1、2、5、10,其中最小的约数是 1
3、,最大的约数是 10。一个数的倍数的个数是无限的,其中最小的倍数是它本身。3 的倍数有:3、6、9、12其中最小的倍数是 3,没有最大的倍数。个位上是 0、2、4、6、8 的数,都能被 2 整除,例如:202、480、304,都能被 2 整除。个位上是 0 或 5 的数,都能被 5 整除,例如:5、30、405 都能被 5 整除。一个数的各位上的数的和能被3 整除,这个数就能被3 整除,例如:12、108、204 都能被 3整除。一个数各位数上的和能被9 整除,这个数就能被 9 整除。能被 3 整除的数不一定能被 9 整除,但是能被 9 整除的数一定能被 3 整除。一个数的末两位数能被 4(或
4、 25)整除,这个数就能被 4(或 25)整除。例如:16、404、1256 都能被 4 整除,50、325、500、1675 都能被 25 整除。一个数的末三位数能被 8(或 125)整除,这个数就能被 8(或 125)整除。例如:1168、4600、5000、12344 都能被 8 整除,1125、13375、5000 都能被 125 整除。能被 2 整除的数叫做偶数。不得用于商业用途仅供个人参考不能被 2 整除的数叫做奇数。0 也是偶数。自然数按能否被2 整除的特征可分为奇数和偶数。一个数,如果只有1 和它本身两个约数,这样的数叫做质数(或素数),100 以内的质数有:2、3、5、7、1
5、1、13、17、19、23、29、31、37、41、43、47、53、59、61、67、71、73、79、83、89、97。一个数,如果除了1 和它本身还有别的约数,这样的数叫做合数,例如 4、6、8、9、12 都是合数。1 不是质数也不是合数,自然数除了1 外,不是质数就是合数。如果把自然数按其约数的个数的不同分类,可分为质数、合数和1。每个合数都可以写成几个质数相乘的形式。其中每个质数都是这个合数的因数,叫做这个合数的质因数,例如 15=35,3 和 5 叫做 15 的质因数。把一个合数用质因数相乘的形式表示出来,叫做分解质因数。例如把 28 分解质因数几个数公有的约数,叫做这几个数的公约
6、数。其中最大的一个,叫做这几个数的最大公约数,例如 12 的约数有 1、2、3、4、6、12;18 的约数有 1、2、3、6、9、18。其中,1、2、3、6 是 12 和 1 8 的公约数,6 是它们的最大公约数。公约数只有 1 的两个数,叫做互质数,成互质关系的两个数,有下列几种情况:1 和任何自然数互质。相邻的两个自然数互质。两个不同的质数互质。当合数不是质数的倍数时,这个合数和这个质数互质。两个合数的公约数只有 1 时,这两个合数互质,如果几个数中任意两个都互质,就说这几个数两两互质。如果较小数是较大数的约数,那么较小数就是这两个数的最大公约数。如果两个数是互质数,它们的最大公约数就是1
7、。几个数公有的倍数,叫做这几个数的公倍数,其中最小的一个,叫做这几个数的最小公倍数,如 2 的倍数有 2、4、6、8、10、12、14、16、18 3 的倍数有 3、6、9、12、15、18 其中 6、12、18是 2、3 的公倍数,6 是它们的最小公倍数。如果较大数是较小数的倍数,那么较大数就是这两个数的最小公倍数。如果两个数是互质数,那么这两个数的积就是它们的最小公倍数。几个数的公约数的个数是有限的,而几个数的公倍数的个数是无限的。(二)小数1 小数的意义把整数 1 平均分成 10 份、100 份、1000 份 得到的十分之几、百分之几、千分之几可以用小数表示。一位小数表示十分之几,两位小
8、数表示百分之几,三位小数表示千分之几一个小数由整数部分、小数部分和小数点部分组成。数中的圆点叫做小数点,小数点左边的数叫做整数部分,小数点左边的数叫做整数部分,小数点右边的数叫做小数部分。在小数里,每相邻两个计数单位之间的进率都是10。小数部分的最高分数单位“十分之一”和整数部分的最低单位“一”之间的进率也是10。2 小数的分类纯小数:整数部分是零的小数,叫做纯小数。例如:0.25、0.368 都是纯小数。带小数:整数部分不是零的小数,叫做带小数。不得用于商业用途仅供个人参考例如:3.25、5.26 都是带小数。有限小数:小数部分的数位是有限的小数,叫做有限小数。例如:41.7、25.3、0.
9、23 都是有限小数。无限小数:小数部分的数位是无限的小数,叫做无限小数。例如:4.33 3.1415926 无限不循环小数:一个数的小数部分,数字排列无规律且位数无限,这样的小数叫做无限不循环小数。例如:循环小数:一个数的小数部分,有一个数字或者几个数字依次不断重复出现,这个数叫做循环小数。例如:3.555 0.0333 12.109109 一个循环小数的小数部分,依次不断重复出现的数字叫做这个循环小数的循环节。例如:3.99 的循环节是“9”,0.5454 的循环节是“54”。纯循环小数:循环节从小数部分第一位开始的,叫做纯循环小数。例如:3.111 0.5656 混循环小数:循环节不是从小
10、数部分第一位开始的,叫做混循环小数。3.1222 0.03333 写循环小数的时候,为了简便,小数的循环部分只需写出一个循环节,并在这个循环节的首、末位数字上各点一个圆点。如果循环节只有一个数字,就只在它的上面点一个点。例如:3.777 简写作0.5302302 简写作。(三)分数1 分数的意义把单位“1”平均分成若干份,表示这样的一份或者几份的数叫做分数。在分数里,中间的横线叫做分数线;分数线下面的数,叫做分母,表示把单位“1”平均分成多少份;分数线下面的数叫做分子,表示有这样的多少份。把单位“1”平均分成若干份,表示其中的一份的数,叫做分数单位。2 分数的分类真分数:分子比分母小的分数叫做
11、真分数。真分数小于1。假分数:分子比分母大或者分子和分母相等的分数,叫做假分数。假分数大于或等于1。带分数:假分数可以写成整数与真分数合成的数,通常叫做带分数。3 约分和通分把一个分数化成同它相等但是分子、分母都比较小的分数,叫做约分。分子分母是互质数的分数,叫做最简分数。把异分母分数分别化成和原来分数相等的同分母分数,叫做通分。(四)百分数1 表示一个数是另一个数的百分之几的数叫做百分数,也叫做百分率或百分比。百分数通常用%来表示。百分号是表示百分数的符号。二方法(一)数的读法和写法不得用于商业用途仅供个人参考1.整数的读法:从高位到低位,一级一级地读。读亿级、万级时,先按照个级的读法去读,
12、再在后面加一个“亿”或“万”字。每一级末尾的 0 都不读出来,其它数位连续有几个 0都只读一个零。2.整数的写法:从高位到低位,一级一级地写,哪一个数位上一个单位也没有,就在那个数位上写 0。3.小数的读法:读小数的时候,整数部分按照整数的读法读,小数点读作“点”,小数部分从左向右顺次读出每一位数位上的数字。4.小数的写法:写小数的时候,整数部分按照整数的写法来写,小数点写在个位右下角,小数部分顺次写出每一个数位上的数字。5.分数的读法:读分数时,先读分母再读“分之”然后读分子,分子和分母按照整数的读法来读。6.分数的写法:先写分数线,再写分母,最后写分子,按照整数的写法来写。7.百分数的读法
13、:读百分数时,先读百分之,再读百分号前面的数,读数时按照整数的读法来读。8.百分数的写法:百分数通常不写成分数形式,而在原来的分子后面加上百分号“%”来表示。(二)数的改写一个较大的多位数,为了读写方便,常常把它改写成用“万”或“亿”作单位的数。有时还可以根据需要,省略这个数某一位后面的数,写成近似数。1.准确数:在实际生活中,为了计数的简便,可以把一个较大的数改写成以万或亿为单位的数。改写后的数是原数的准确数。例如把 00 改写成以万做单位的数是 125430 万;改写成以亿做单位的数 12.543 亿。2.近似数:根据实际需要,我们还可以把一个较大的数,省略某一位后面的尾数,用一个近似数来
14、表示。例如:15 省略亿后面的尾数是 13 亿。3.四舍五入法:要省略的尾数的最高位上的数是4 或者比 4 小,就把尾数去掉;如果尾数的最高位上的数是 5 或者比 5 大,就把尾数舍去,并向它的前一位进 1。例如:省略 345900万后面的尾数约是 35 万。省略 20 亿后面的尾数约是 47 亿。4.大小比较1.比较整数大小:比较整数的大小,位数多的那个数就大,如果位数相同,就看最高位,最高位上的数大,那个数就大;最高位上的数相同,就看下一位,哪一位上的数大那个数就大。2.比较小数的大小:先看它们的整数部分,整数部分大的那个数就大;整数部分相同的,十分位上的数大的那个数就大;十分位上的数也相
15、同的,百分位上的数大的那个数就大3.比较分数的大小:分母相同的分数,分子大的分数比较大;分子相同的数,分母小的分数大。分数的分母和分子都不相同的,先通分,再比较两个数的大小。(三)数的互化1.小数化成分数:原来有几位小数,就在 1 的后面写几个零作分母,把原来的小数去掉小数点作分子,能约分的要约分。2.分数化成小数:用分母去除分子。能除尽的就化成有限小数,有的不能除尽,不能化成有限小数的,一般保留三位小数。3.一个最简分数,如果分母中除了 2 和 5 以外,不含有其他的质因数,这个分数就能化成不得用于商业用途仅供个人参考有限小数;如果分母中含有2 和 5 以外的质因数,这个分数就不能化成有限小
16、数。4.小数化成百分数:只要把小数点向右移动两位,同时在后面添上百分号。5.百分数化成小数:把百分数化成小数,只要把百分号去掉,同时把小数点向左移动两位。6.分数化成百分数:通常先把分数化成小数(除不尽时,通常保留三位小数),再把小数化成百分数。7.百分数化成小数:先把百分数改写成分数,能约分的要约成最简分数。(四)数的整除1.把一个合数分解质因数,通常用短除法。先用能整除这个合数的质数去除,一直除到商是质数为止,再把除数和商写成连乘的形式。2.求几个数的最大公约数的方法是:先用这几个数的公约数连续去除,一直除到所得的商只有公约数 1 为止,然后把所有的除数连乘求积,这个积就是这几个数的的最大
17、公约数。3.求几个数的最小公倍数的方法是:先用这几个数(或其中的部分数)的公约数去除,一直除到互质(或两两互质)为止,然后把所有的除数和商连乘求积,这个积就是这几个数的最小公倍数。4.成为互质关系的两个数:1 和任何自然数互质;相邻的两个自然数互质;当合数不是质数的倍数时,这个合数和这个质数互质;两个合数的公约数只有 1 时,这两个合数互质。(五)约分和通分约分的方法:用分子和分母的公约数(1 除外)去除分子、分母;通常要除到得出最简分数为止。通分的方法:先求出原来的几个分数分母的最小公倍数,然后把各分数化成用这个最小公倍数作分母的分数。三性质和规律(一)商不变的规律商不变的规律:在除法里,被
18、除数和除数同时扩大或者同时缩小相同的倍,商不变。(二)小数的性质小数的性质:在小数的末尾添上零或者去掉零小数的大小不变。(三)小数点位置的移动引起小数大小的变化1.小数点向右移动一位,原来的数就扩大 10 倍;小数点向右移动两位,原来的数就扩大 100倍;小数点向右移动三位,原来的数就扩大1000 倍2.小数点向左移动一位,原来的数就缩小 10 倍;小数点向左移动两位,原来的数就缩小 100倍;小数点向左移动三位,原来的数就缩小1000 倍3.小数点向左移或者向右移位数不够时,要用“0补足位。(四)分数的基本性质分数的基本性质:分数的分子和分母都乘以或者除以相同的数(零除外),分数的大小不变。
19、(五)分数与除法的关系1.被除数除数=被除数/除数2.因为零不能作除数,所以分数的分母不能为零。3.被除数不得用于商业用途仅供个人参考相当于分子,除数相当于分母。四运算的意义(一)整数四则运算1 整数加法:把两个数合并成一个数的运算叫做加法。-在加法里,相加的数叫做加数,加得的数叫做和。加数是部分数,和是总数。-加数+加数=和一个加数=和另一个加数2 整数减法:已知两个加数的和与其中的一个加数,求另一个加数的运算叫做减法。-在减法里,已知的和叫做被减数,已知的加数叫做减数,未知的加数叫做差。被减数是总数,减数和差分别是部分数。-加法和减法互为逆运算。3 整数乘法:求几个相同加数的和的简便运算叫
20、做乘法。-在乘法里,相同的加数和相同加数的个数都叫做因数。相同加数的和叫做积。-在乘法里,0 和任何数相乘都得 0.1 和任何数相乘都的任何数。-一个因数 一个因数=积一个因数=积另一个因数4整数除法:已知两个因数的积与其中一个因数,求另一个因数的运算叫做除法。-在除法里,已知的积叫做被除数,已知的一个因数叫做除数,所求的因数叫做商。-乘法和除法互为逆运算。-在除法里,0 不能做除数。因为 0 和任何数相乘都得 0,所以任何一个数除以 0,均得不到一个确定的商。-被除数除数=商除数=被除数商被除数=商除数(二)小数四则运算1.小数加法:小数加法的意义与整数加法的意义相同。是把两个数合并成一个数
21、的运算。2.小数减法:小数减法的意义与整数减法的意义相同。已知两个加数的和与其中的一个加数,求另一个加数的运算.3.小数乘法:小数乘整数的意义和整数乘法的意义相同,就是求几个相同加数和的简便运算;一个数乘纯小数的意义是求这个数的十分之几、百分之几、千分之几是多少。4.小数除法:小数除法的意义与整数除法的意义相同,就是已知两个因数的积与其中一个因数,求另一个因数的运算。5.乘方求几个相同因数的积的运算叫做乘方。例如 3 3=32(三)分数四则运算1.分数加法:分数加法的意义与整数加法的意义相同。是把两个数合并成一个数的运算。2.分数减法:分数减法的意义与整数减法的意义相同。已知两个加数的和与其中
22、的一个加数,求另一个加数的运算。3.分数乘法:分数乘法的意义与整数乘法的意义相同,就是求几个相同加数和的简便运算。4.乘积是 1 的两个数叫做互为倒数。5.分数除法:分数除法的意义与整数除法的意义相同。就是已知两个因数的积与其中一个因数,求另一个因数的运算。不得用于商业用途仅供个人参考(四)运算定律1.加法交换律:两个数相加,交换加数的位置,它们的和不变,即a+b=b+a。2.加法结合律:三个数相加,先把前两个数相加,再加上第三个数;或者先把后两个数相加,再和第一个数相加它们的和不变,即(a+b)+c=a+(b+c)。3.乘法交换律:两个数相乘,交换因数的位置它们的积不变,即ab=ba。4.乘
23、法结合律:三个数相乘,先把前两个数相乘,再乘以第三个数;或者先把后两个数相乘,再和第一个数相乘,它们的积不变,即(ab)c=a(bc)。5.乘法分配律:两个数的和与一个数相乘,可以把两个加数分别与这个数相乘再把两个积相加,即(a+b)c=ac+bc。6.减法的性质:从一个数里连续减去几个数,可以从这个数里减去所有减数的和,差不变,即 a-b-c=a-(b+c)。(五)运算法则1.整数加法计算法则:相同数位对齐,从低位加起,哪一位上的数相加满十,就向前一位进一。2.整数减法计算法则:相同数位对齐,从低位加起,哪一位上的数不够减,就从它的前一位退一作十,和本位上的数合并在一起,再减。3.整数乘法计
24、算法则:先用一个因数每一位上的数分别去乘另一个因数各个数位上的数,用因数哪一位上的数去乘,乘得的数的末尾就对齐哪一位,然后把各次乘得的数加起来。4.整数除法计算法则:先从被除数的高位除起,除数是几位数,就看被除数的前几位;如果不够除,就多看一位,除到被除数的哪一位,商就写在哪一位的上面。如果哪一位上不够商 1,要补“0”占位。每次除得的余数要小于除数。5.小数乘法法则:先按照整数乘法的计算法则算出积,再看因数中共有几位小数,就从积的右边起数出几位,点上小数点;如果位数不够,就用“0”补足。6.除数是整数的小数除法计算法则:先按照整数除法的法则去除,商的小数点要和被除数的小数点对齐;如果除到被除
25、数的末尾仍有余数,就在余数后面添“0”,再继续除。7.除数是小数的除法计算法则:先移动除数的小数点,使它变成整数,除数的小数点也向右移动几位(位数不够的补“0”),然后按照除数是整数的除法法则进行计算。8.同分母分数加减法计算方法:同分母分数相加减,只把分子相加减,分母不变。9.异分母分数加减法计算方法:先通分,然后按照同分母分数加减法的的法则进行计算。10.带分数加减法的计算方法:整数部分和分数部分分别相加减,再把所得的数合并起来。11.分数乘法的计算法则:分数乘整数,用分数的分子和整数相乘的积作分子,分母不变;分数乘分数,用分子相乘的积作分子,分母相乘的积作分母。12.分数除法的计算法则:
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 经典 小学 数学 知识点 归纳 梳理
限制150内