18.1勾股定理(第1课时)课件.ppt
《18.1勾股定理(第1课时)课件.ppt》由会员分享,可在线阅读,更多相关《18.1勾股定理(第1课时)课件.ppt(71页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、八年级数学下册八年级数学下册(人教版人教版)第十八章 勾股定理 古店中学古店中学 吕德品吕德品学习目标 1、知识与技能 掌握勾股定理反映的数量关系;会用拼图法、面积法证明勾股定理;在生活实践中学会使用勾股定理。2、过程与方法 通过“观察猜想归纳验证”过程理解勾股定理;学会从特殊到一般的数学思考方法。3、情感态度、价值观 通过实验、猜想、拼图、证明等了解数学知识的发生发展过程,学会合作交流,体验探究乐趣,增强探索意识;感受勾股定理的悠久历史,激发学习热情。除地球外,别的星球上有没有生命呢?自古以来,人类就不断发出这样的疑问,特别是近年来不断出现的UFO事件,更让人们相信有外星人的说法,如果真的有
2、,那我们怎么和他们交流呢?我国著名数学家华罗庚在多年前曾提出这样的设想:向太空发射一种图形,因为这种图形在几千年前就已经被人类所认识,如果他们是“文明人”,也必定认识这种图形.一、创设情境数学家华罗庚曾建议用数学家华罗庚曾建议用“勾股定理勾股定理”图作为与图作为与“外星人外星人”联系的信号。联系的信号。弦图弦图这个图形里蕴这个图形里蕴涵着怎样博大涵着怎样博大精深的知识呢精深的知识呢?它标志着我国它标志着我国古代数学的伟古代数学的伟大成就!大成就!假如我们一旦和外星人见面,该使用什么语言呢?假如我们一旦和外星人见面,该使用什么语言呢?使用使用“符号语言符号语言”与外星人联系是最经济和最有效的,与
3、外星人联系是最经济和最有效的,外星人也最可能使用这种语言外星人也最可能使用这种语言,并且最可能是数学语言。并且最可能是数学语言。中国数学家华罗庚认为,我们可以用两个图形作为与外中国数学家华罗庚认为,我们可以用两个图形作为与外星人交谈的媒介,一个是星人交谈的媒介,一个是“数数”,另一个是,另一个是“数形关系数形关系”(勾股定理)。因为这种自然图形所具备的(勾股定理)。因为这种自然图形所具备的“数形关数形关系系”在整个宇宙中是普遍的。在整个宇宙中是普遍的。探索勾股定理探索勾股定理 那么这到底是一种什么样的图形呢?它真的有那么大的魅力吗?下面就让我们通过时光隧道,和古希腊的数学家毕达哥拉斯一起来研究
4、这种图形吧。毕达哥拉斯(公元前572-前492年),古希腊著名的哲学家、数学家、天文学家。相传有一次他在朋友家做客时,发现朋友家用砖铺成的地面中反映了A、B、C三者面积之间的数量关系,进而发现直角三角形三边的某种数量关系AB C 我们也来观察右图的地面,你能发现A、B、C面积之间有什么数量关系吗?SA+SB=SC每块砖都是等腰直角三角形哦(图中每个小方格是1个单位面积)1.A中含有_个小方格,即A的面积是 个单位面积B的面积是 个单位面积C的面积是 个单位面积99189探究一:你能发现图1中正方形A、B、C的面积之间有什么数量关系吗?二、实验探究ABC图1结论:图1中三个正方形A,B,C的面积
5、之间的数量关系是:S SA A+S+SB B=S=SC C探究二:S SA A+S+SB B=S=SC C在图2中还成立吗?ABC图2结论:仍然成立。A的面积是 个单位面积B的面积是 个单位面积C的面积是 个单位面积25169 你是怎样得到正方形C的面积的?与同伴交流交流(图中每个小方格是1个单位面积)ABC问题2:式子SA+SB=SC能用直角三角形的三边a、b、c来表示吗?问题4:那么直角三角形三边a、b、c之间的关系式是:abc 至此,我们在网格中验证了:直角三角形两条直角边上的正方形面积之和等于斜边上的正方形面积,即SA+SB=SCa2+b2=c2a2+b2=c2问题1:去掉网格结论会改
6、变吗?问题3:去掉正方形结论会改变吗?命题1:如果直角三角形的两直角边长分别为a,b,斜边长为c,那么a2+b2=c2.abc我们猜想:是不是所有的直角三角形都具有这样的结论呢?光靠实验和猜想还不能把问题彻底搞清楚。这就需要我们对一般的直角三角形进行证明下面我们就一起来探究,看一看我国古代数学家赵爽是怎样证明这个命题的三、拼图证明 以直角三角形的两条直角边a、b为边作两个正方形,把两个正方形如图1连在一起,通过剪、拼把它拼成图2的样子。你能做到吗?试试看。赵爽拼图证明法:c c 小组活动:仿照课本中赵爽的思路,只剪两刀,将两个连体正方形,拼成一个新的正方形.图1黄实朱实朱实朱实朱实朱实朱实朱实
7、朱实图2c c黄实朱实朱实朱实朱实朱实朱实朱实朱实b a MNP剪、拼过程展示:“赵爽弦图”黄实朱实朱实朱实朱实朱实朱实朱实朱实c ca ab b“赵爽弦图”表现了我国古人对数学的钻研精神和聪明才智,是我国古代数学的骄傲。因此,当 2002年第24届国际数学家大会在北京召开时,“赵爽弦图”被选作大会会徽。现在,我们已经证明了命题1的正确性,在数学上,经过证明被确认为正确的命题叫做定理,所以命题1在我国叫做勾股定理(gou-gu theorem)。勾股定理:如果直角三角形两直角边长分别为a、b,斜边长为c,那么 a2+b2 =c2即:直角三角形两直角边的平方和等于斜边的平方。1.1.成立条件成立
8、条件:在直角三角形中在直角三角形中3.3.作用作用:已知直角三角形任意两边长,:已知直角三角形任意两边长,求第三边长。求第三边长。2.2.公式变形公式变形:abc如果如果直角三角形直角三角形两直角边长分别为两直角边长分别为a a、b,b,斜边长为斜边长为c c勾勾 股股 定定 理理(注意(注意:哪条边是斜边哪条边是斜边)结论变形结论变形c2=a2 +b2abcABC 为什么叫勾股定理这个名称呢?原来在中国古代,人们把弯曲成直角的手臂的上半部分称为“勾”,下半部分称为“股”。于是我国古代学者就把直角三角形中较短直角边称为“勾”,较长直角边称为“股”,斜边称为“弦”.由于命题1反映的正好是直角三角
9、形三边的关系,所以叫做勾股定理。勾股国外又叫毕达哥拉斯定理勾勾2 +股股2 =弦弦2股股勾勾勾勾较短的直角边较短的直角边称为称为 ,股股较长的直角边较长的直角边称为称为 ,直角三角形中直角三角形中弦弦斜边斜边称为称为 。弦弦勾股世界勾股世界 我国是最早了解勾股定理的国家之我国是最早了解勾股定理的国家之一。三千多年前,周朝数学家商高就提一。三千多年前,周朝数学家商高就提出了出了“勾勾三三股股四四弦弦五五”的说法。的说法。其他证明方法用四个全等三角形拼图证明。勾股定理是几何学中的明珠,它充满了无穷的魅力,千百年来,人们对它的证明趋之若鹜,其中有著名的数学家、画家,也有业余数学爱好者,有普通的老百姓
10、,也有尊贵的政要权贵,甚至有国家总统。有资料表明,关于勾股定理的证明方法已有500余种。验证勾股定理的正确性验证勾股定理的正确性例题:求出下列直角三角形中未知边的长度.解:(1)在RtABC中,由勾股定理得:AB2=AC2+BC2X2=36+64x2=100 x2=62+82x0 y2+52=132 y2=132-52y2=144 y=12(2)在RtABC中,由勾股定理得:AC2+BC2=AB2y0A68xCB5y13CABX=10四、实践应用方法总结:利用勾股定理建立方程.1.1.求下列直角三角形中未知边的长求下列直角三角形中未知边的长:8 8171712125 5xx用勾股定理用勾股定理
11、建立方程建立方程.判断哪条边判断哪条边是斜边!是斜边!练习1:图中已知数据表示面积,求表示边的未知数x、y的值.916xy144169看谁算得快如图,大风将一根木制旗如图,大风将一根木制旗杆吹裂,随时都可能倒下,杆吹裂,随时都可能倒下,十分危急。接警后十分危急。接警后“119119”迅速赶到现场,并决定从迅速赶到现场,并决定从断裂处将旗杆折断。现在断裂处将旗杆折断。现在需要划出一个安全警戒区需要划出一个安全警戒区域,那么你能确定这个安域,那么你能确定这个安全区域的半径至少是多少全区域的半径至少是多少米吗?米吗?议一议:议一议:9m24m?练习2:已知S1=1,S2=3,S3=2,S4=4,求S
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 18.1 勾股定理 课时 课件
限制150内