2.1离散型随机变量及其分布列38089.ppt
《2.1离散型随机变量及其分布列38089.ppt》由会员分享,可在线阅读,更多相关《2.1离散型随机变量及其分布列38089.ppt(21页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、离散型随机变量及其分布列离散型随机变量及其分布列引例:引例:(1)抛掷一枚骰子,可能出现的点数有几种情况?)抛掷一枚骰子,可能出现的点数有几种情况?(2)姚明罚球)姚明罚球2次有可能得到的分数有几种情况?次有可能得到的分数有几种情况?(3)抛掷一枚硬币,可能出现的结果有几种情况?)抛掷一枚硬币,可能出现的结果有几种情况?思考:在上述试验开始之前,你能确定结果是哪一思考:在上述试验开始之前,你能确定结果是哪一 种情况吗?种情况吗?1,2,3,4,5,60分分,1分分,2分分正面向上,反面向上正面向上,反面向上能否把掷硬能否把掷硬币的结果也币的结果也用数字来表用数字来表示呢?示呢?分析:不行,虽然
2、我们能够事先知道随机试验可能出分析:不行,虽然我们能够事先知道随机试验可能出现的现的所有所有结果,但在一般情况下,试验的结果是随机出结果,但在一般情况下,试验的结果是随机出现的。现的。在前面的例子中,我们把随机试验的每一个结果在前面的例子中,我们把随机试验的每一个结果都用一个确定的数字来表示,这样试验结果的变化就都用一个确定的数字来表示,这样试验结果的变化就可看成是这些数字的变化。可看成是这些数字的变化。若把这些数字当做某个变量的取值,则这个变量若把这些数字当做某个变量的取值,则这个变量就叫做就叫做随机变量随机变量,常用,常用X、Y、x x、h h 来表示。来表示。一、随机变量的概念:一、随机
3、变量的概念:按照我们的定义,所谓的随机变量,就是随机试验按照我们的定义,所谓的随机变量,就是随机试验的试验结果与实数之间的一个对应关系。那么,随机变量的试验结果与实数之间的一个对应关系。那么,随机变量与函数有类似的地方吗?与函数有类似的地方吗?随机变量是试验结果与实数的一种对应关系,而随机变量是试验结果与实数的一种对应关系,而函数是实数与实数的一种对应关系,它们都是一种映射函数是实数与实数的一种对应关系,它们都是一种映射 在这两种映射之间,在这两种映射之间,试验结果的范围相当于函数的定义域,试验结果的范围相当于函数的定义域,随机变量的取值结果相当于函数的值域。随机变量的取值结果相当于函数的值域
4、。所以我们也把随机变量的取值范围叫做随机变量的值域。所以我们也把随机变量的取值范围叫做随机变量的值域。例例1、一个袋中装有、一个袋中装有5个白球和个白球和5个黑球,若从中任取个黑球,若从中任取3个,个,则其中所含白球的个数则其中所含白球的个数X就就是一个随机变量,求是一个随机变量,求X的取值的取值范围,并说明范围,并说明X的不同取值所表示的事件。的不同取值所表示的事件。解:解:X的取值范围是的取值范围是 0,1,2,3 ,其中,其中 X=0表示的事件是表示的事件是“取出取出0个白球,个白球,3个黑球个黑球”;X=1表示的事件是表示的事件是“取出取出1个白球,个白球,2个黑球个黑球”;X=2表示
5、的事件是表示的事件是“取出取出2个白球,个白球,1个黑球个黑球”;X=3表示的事件是表示的事件是“取出取出3个白球,个白球,0个黑球个黑球”;变题:变题:X 3在这里又表示什么事件呢?在这里又表示什么事件呢?“取出的取出的3个球中,白球不超过个球中,白球不超过2个个”写出下列各随机变量可能的取值,并说明它们各自写出下列各随机变量可能的取值,并说明它们各自所表示的随机试验的结果:所表示的随机试验的结果:(1)从)从10张已编号的卡片(从张已编号的卡片(从1号到号到10号)中任取号)中任取1张,张,被取出的卡片的号数被取出的卡片的号数x x;(2)抛掷两个骰子,所得点数之和)抛掷两个骰子,所得点数
6、之和Y;(3)某城市)某城市1天之中发生的火警次数天之中发生的火警次数X;(4)某品牌的电灯泡的寿命)某品牌的电灯泡的寿命X;(5)某林场树木最高达)某林场树木最高达30米,最低是米,最低是0.5米,则此林场米,则此林场 任意一棵树木的高度任意一棵树木的高度x x(x x=1、2、3、10)(Y=2、3、12)(X=0、1、2、3、)0,+)0.5,30思考:前思考:前3个随机变量与最后两个有什么区别?个随机变量与最后两个有什么区别?二、随机变量的分类:二、随机变量的分类:1、如果可以按一定次序,把随机变量可能取的值一一、如果可以按一定次序,把随机变量可能取的值一一 列出,那么这样的随机变量就
7、叫做列出,那么这样的随机变量就叫做离散型随机变量离散型随机变量。(如掷骰子的结果,城市每天火警的次数等等)(如掷骰子的结果,城市每天火警的次数等等)2、若随机变量可以取某个区间内的一切值,那么这样的、若随机变量可以取某个区间内的一切值,那么这样的 随机变量叫做随机变量叫做连续型随机变量连续型随机变量。(如灯泡的寿命,树木的高度等等)(如灯泡的寿命,树木的高度等等)注意:注意:(1)随机变量不止两种,我们只研究离散型随机变量;)随机变量不止两种,我们只研究离散型随机变量;(2)变量离散与否与变量的选取有关;)变量离散与否与变量的选取有关;比如:对灯泡的寿命问题,可定义如下离散型随机变量比如:对灯
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 2.1 离散 随机变量 及其 分布 38089
限制150内