最新弹性力学—第四章—平面问题的极坐标解答PPT课件.ppt
《最新弹性力学—第四章—平面问题的极坐标解答PPT课件.ppt》由会员分享,可在线阅读,更多相关《最新弹性力学—第四章—平面问题的极坐标解答PPT课件.ppt(83页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、弹性力学弹性力学第四章第四章平面平面问题的极坐标解答问题的极坐标解答极坐标中的应力分量xyo由径向线和圆弧线围成的圆形,扇形等弹性体,适合用极坐标求解。与直角坐标的区别:1.坐标的量纲不同。2.坐标的方向不同。与直角坐标的相同处:1.应力与体力的正负号规定相同。2.切应力互等。BPAxyoPAB极坐标中的几何方程(5)纯环向位移下的线应变DD 很小,导致PA与PA的差别可以忽略,因此:BPAxyoPAB极坐标中的几何方程(6)纯环向位移下的切应变DD极坐标中的几何方程(7)将纯环向与纯径向位移的结果相加得极坐标中的几何方程:极坐标中的物理方程极坐标中的物理方程与直角坐标中的物理方程形式一样,只
2、需将直角坐标 x 和 y 换成 和 即可,如平面应力问题的物理方程为:换为换为对于平面应变问题:极坐标中的应力函数与相容方程(1)为了简化推导,可以将直角坐标的公式直接变换到极坐标中来,为此,我们需要如下关系式:极坐标中的应力函数与相容方程(2)建立直角坐标中的应力函数与极坐标中应力函数的关系:极坐标中的应力函数与相容方程(3)证明以上应力分量满足平衡方程。极坐标中的应力函数与相容方程(4)代入直角坐标中的相容方程:将环向正应力与径向正应力相加:得到极坐标中的相容方程:注:当不计体力时,在极坐标中按应力求解平面问题需要满足相容方程,应力边界条件以及位移单值条件。应力分量的坐标变换式(1)应力分
3、量在直角坐标系与极坐标系之间的转换需要建立两者之间的关系。xyoBA设A中斜边上的面积为ds,则由A中径向上的力平衡,得到:应力分量的坐标变换式(2)应力分量在直角坐标系与极坐标系之间的转换需要建立两者之间的关系。xyoBA简化后得到:应力分量的坐标变换式(3)应力分量在直角坐标系与极坐标系之间的转换需要建立两者之间的关系。xyoBA由A中环向上的力平衡,得到:应力分量的坐标变换式(4)应力分量在直角坐标系与极坐标系之间的转换需要建立两者之间的关系。xyoBA由B中环向上的力平衡,得到:应力分量的坐标变换式(5)整理结果如下:轴对称应力状态下的应力(1)所谓轴对称,是指物体的形状或某物理量是绕
4、一轴对称的,凡通过对称轴的任何面都是对称面。因此,轴对称应力状态下的应力分量只与径向坐标有关而与环向坐标无关,而应力函数只是径向坐标的函数,即:简化相容方程:轴对称应力状态下的应力(2)轴对称问题的拉普拉斯算子可以写成:代入相容方程:得到:轴对称应力状态下的应力(3)积 分 四 次得 到 应 力函数:轴对称应力状态下的应力(4)轴对称问题的应力分量函数:轴对称应力状态下的位移(1)由物理方程可由应力分量得到应变分量:轴对称应力状态下的位移(2)由几何方程可由应变分量得到位移分量:轴对称应力状态下的位移(3)轴对称应力状态下的位移(4)将以上得到的环向径向位移代入切应变的几何方程:得到:轴对称应
5、力状态下的位移(4)分离变量以便求得未知函数的形式:轴对称应力状态下的位移(5)轴对称应力状态下的位移(6)代入得到轴对称问题小结以上是轴对称应力状态下,应力分量和位移分量的一般表达式,适用任何轴对称应力问题。其中,待定系数将由应力边界条件,位移边界条件和位移单值条件确定。若位移边界条件也是轴对称的,则位移也是轴对称的。圆环或圆筒受均布压力(1)q1q2边界条件:圆环或圆筒受均布压力(2)q1q2两个方程三个未知数,不能求解A,B,C。因此,需引入位移单值条件:该项必须为零,否则在环上同一点有两个不同的位移,故B=0圆环或圆筒受均布压力(3)q1q2因此,得到圆筒受均匀压力的拉梅(G.Lame
6、,17951870,法国)解答:圆环或圆筒受均布压力(4)q1q2若只有内压力,则径向正应力为压应力,而环向正应力为拉应力。另外,若R无穷大,即在无限大薄板中有一圆孔,或在无限大弹性体中有一孔道,则:注:远离孔口处应力很小,可以不计。压力隧洞(1)设有圆筒,埋在无限大弹性体中,受有均布压力q,圆筒和无限大弹性体的弹性常数分别为E,和E,。圆筒内外径分别为r和R。无限大弹性体可看成是内径为R而外径为无限大的圆筒。q压力隧洞(2)圆筒无限大弹性体轴对称问题环向位移的一般解答:圆筒无限大弹性体压力隧洞(3)由应力边界条件得:1.圆筒内壁:2.无限大弹性体离 圆筒无限远处:3.接触面:压力隧洞(4)由
7、位移边界条件得:4.接触面:平面应力状态下轴对称问题的径向位移解答:平面应变状态下轴对称问题的径向位移解答:0压力隧洞(5)径向位移解答:4.接触面:n压力隧洞(6)应力分量的最终解答:小结:该问题是最简单的接触问题,属于完全接触问题。在接触面上,两弹性体的正应力与切应力相等,法向与切向位移也相等。光滑接触属于非完全接触,在接触面上,两弹性体的正应力与法向位移相等,而切向位移不相等。此外,还有摩擦滑移接触,在法向上,正应力及位移相等,在切向上,则达到极限滑移状态而产生移动,此时两弹性体的切应力都等于极限摩擦力。圆孔孔口应力集中(1)本节研究小孔口问题,即孔口尺寸远小于弹性体尺寸,并且孔边距弹性
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 最新 弹性 力学 第四 平面 问题 坐标 解答 PPT 课件
限制150内