第六章数据的收集与整理考点详解.docx
《第六章数据的收集与整理考点详解.docx》由会员分享,可在线阅读,更多相关《第六章数据的收集与整理考点详解.docx(8页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、第六章 数据的收集与整理 1数据的收集 2普查和抽样调查o 全面调查和抽样调查 3数据的表示o 扇形图o 条形图o 频数与频率o 直方图 4统计图的选择o 折线图o 统计表o 象形统计图1数据的收集2普查和抽样调查考点名称:全面调查和抽样调查全面调查:就是对需要调查的对象进行逐个调查。这种方法所得资料较为全面可靠,但调查花费的人力、物力、财力较多,且调查时间较长,不适合一般企业的要求。全面调查只在产品销售范围很窄或用户很少的情况下可以采用。对品种多、产量大、销售范围广的产品,就不适用全面调查,而可以采用抽样调查。抽样调查:是从需要调查对象的总体中,抽取若干个个体即样本进行调查,并根据调查的情况
2、推断总体的特征的一种调查方法。抽样调查可以把调查对象集中在少数样本上,并获得与全面调查相近的结果。这是一种较经济的调查方法,因而被广泛采用。抽样调查是从研究对象的总体中抽取一部分个体作为样本进行调查,据此推断有关总体的数字特征。调查好处与特点:1.全面调查:对需要调查的对象进行逐个调查。好处:所得资料较为全面可靠。特点:调查花费的人力、物力、财力较多,且调查时间较长,全面调查只在样本很少的情况下适合采用。2.抽样调查:是一种非全面调查,它是从全部调查研究对象中,抽选一部分单位进行调查,并据以对全部调查研究对象作出估计和推断的一种调查方法。好处:耗费的人力,物力,财力少,大量节约调查时间。特点:
3、1、按随机原则抽选样本。2、总体中每一个单位都有一定的概率被抽中。3、可以用一定的概率来保证将误差控制在规定的范围之内。4、适合样本数量较多的情况下采用。全面调查和抽样调查关系:全面调查和抽样调查是按调查对象范围不同划分的调查方式。全面调查是对调查对象中的所有单位全部加以调查,通过基层单位按照一定的报表填报要求进行逐一登记、逐级上报、层层汇总,最后取得调查结果的一种调查方式,如人口普查、经济普查等。抽样调查是一种非全面调查,它是从研究的总体中按随机原则抽取部分样本单位进行调查,并根据样本单位的调查结果来推断总体,以达到认识总体的一种统计调查方式。抽样调查用样本指标代表总体指标不可避免会产生误差
4、,抽样推断虽然会有抽样误差(不包括登记误差和系统性误差),但只要严格遵守随机原则,所选的样本结构与总体结构相同,或者两者分布一致,就可以运用数学公式计算抽样误差。随机抽样产生的误差,只要确定其具体的数量界限,可以通过抽样程序设计加以控制。因此抽样调查的结果是有可靠的科学依据的。抽样调查与全面调查有着相辅相成的关系。在实际运用中,没有必要进行全面调查和不可能进行全面调查时宜采用抽样调查。抽样调查的优点:一是由于只从总体中抽取一部分样本进行调查,工作量小,所以比全面调查节省人力、物力、财力,比较经济;二是可以及时取得调查资料,提高数据的时效性;三是数据质量有保证,由于抽样调查一般是自上而下组织调查
5、,直接派员深入实际抽取样本并推断总体,可以减少人为因素干扰,只要取样、推断方法科学,均有利于提高数据的质量;第四,调查方法灵活,如实际工作中使用较多的问卷调查、入户调查、电话调查等,适应面广,特别适于对点多面广的总体作调查。3数据的表示(1)考点名称:扇形图定义:用圆的面积代表事物总体,以扇形的面积和圆的面积的比值表示个项目占总体的百分数的统计图,叫做扇形统计图。特点:(1)用扇形的面积表示部分在总体中所占的百分比;(2)易于显示每组数据相对于总数的大小。作用:能清楚地了解各部分数与总数之间的关系与比例。扇形面积与其对应的圆心角的关系是:扇形面积越大,圆心角的度数越大。扇形面积越小,圆心角的度
6、数越小。扇形所对圆心角的度数与百分比的关系是:圆心角的度数=百分比360度扇形统计图还可以画成圆柱形的。制作扇形统计图的步骤:(1)根据统计资料,整理数据,并计算出部分占整体的百分数;(2)根据各部分占总体的百分数,计算出各部分扇形圆心角的度数;(3)取适当半径作圆,按圆心角将圆分成几个扇形;(4)对应标上各部分名称及占总体的百分数。(2)考点名称:条形图条形图定义:用一个单位长度表示一定的数量,根据数量的多少画成长短不同的条形,条形的宽度必须保持一致,然后把这些条形排列起来,这样的统计图叫做条形统计图。它可以表示出每个项目的具体数量。条形图特点:(1)能够显示每组中的具体数据;(2)易于比较
7、数据之间的差别。描绘条形图的3要素:组数、组宽度、组限。1.组数把数据分成几组,指导性的经验是将数据分成510组。2.组宽度通常来说,每组的宽度是一致的。组数和组宽度的选择就不是独立决定的,一个经验标准是:近似组宽度=(最大值-最小值)/组数然后根据四舍五入确定初步的近似组宽度,之后根据数据的状况进行调整。3.组限分为组下限(进入该组的最小可能数据)和组上限(进入该组的最大可能数据),并且一个数据只能在一个组限内。绘画条形图时,不同组之间是有空隙的;而绘画直方图时,不同组之间是没有空隙的。使用条形图的情况:轴标签过长;显示的数值是持续型的。条形图具有下列图表子类型:簇状条形图和三维簇状条形图
8、簇状条形图比较各个类别的值。在簇状条形图中,通常沿垂直轴组织类别,而沿水平轴组织数值。三维簇状条形图以三维格式显示水平矩形,而不以三维格式显示数据。堆积条形图和三维堆积条形图 堆积条形图显示单个项目与整体之间的关系。三维堆积条形图以三维格式显示水平矩形,而不以三维格式显示数据。百分比堆积条形图和三维百分比堆积条形图 此类型的图表比较各个类别的每一数值所占总数值的百分比大小。三维百分比堆积条形图表以三维格式显示水平矩形,而不以三维格式显示数据。水平圆柱图、圆锥图和棱锥图 水平圆柱图、圆锥图和棱锥图可以使用为矩形条形图提供的簇状图、堆积图和百分比堆积图,并且它们以完全相同的方式显示和比较数据。唯一
9、的区别是这些图表类型显示圆柱、圆锥和棱锥形状而不是水平矩形。制作条形图的步骤:(1)根据统计资料整理数据,一般整理成表格形式;(2)画出横轴、纵轴,确定它们所表示的项目,选定标尺,按一定比例作为长度单位,长短要适中,根据数据的大小对应标出;(3)画直条,条形的高与数据的大小成比例。条形的宽度、间隔要一致;(4)写上统计总标题、制图日期及数量单位。(3)考点名称:频数与频率频数:一般我们称落在不同小组中的数据个数为该组的频数。频率:频数与数据总数的比值为频率。频率反映了各组频数的大小在总数中所占的分量。频数:在一组依大小顺序排列的测量值中,当按一定的组距将其分组时出现在各组内的测量值的数目。如有
10、一组测量数据,数据的总个数N=148最小的测量值xmin=0.03,最大的测量值xmax=31.67,按组距为x=3.000将148个数据分为11组,其中分布在15.0518.05范围内的数据有26个,则称该数据组的频数为26。频率:如在中,9出现的频数是3,出现的频率是3/18=16.7%频数也称“次数”,对总数据按某种标准进行分组,统计出各个组内含个体的个数。而频率则每个小组的频数与数据总数的比值。在变量分配数列中,频数(频率)表明对应组标志值的作用程度。频数(频率)数值越大表明该组标志值对于总体水平所起的作用也越大,反之,频数(频率)数值越小,表明该组标志值对于总体水平所起的作用越小。(
11、4)考点名称:直方图频数分布直方图的定义:在统计数据时,按照频数分布表,在平面直角坐标系中,横轴标出每个组的端点,纵轴表示频数,每个矩形的高代表对应的频数,称这样的统计图为频数分布直方图。相关概念:组数:在统计数据时,我们把数据按照不同的范围分成几个组,分成的组的个数称为组数。组距:每一组两个端点的差。频数分布直方图的特点:能够显示各组频数分布的情况;易于显示各组之间频数的差别。作直方图的目的有:作直方图的目的就是通过观察图的形状,判断生产过程是否稳定,预测生产过程的质量。1判断一批已加工完毕的产品;搜集有关数据。直方图将数据根据差异进行分类,特点是明察秋毫地掌握差异。2在公路工程质量管理中,
12、作直方图的目的有:估算可能出现的不合格率;考察工序能力估算法判断质量分布状态;判断施工能力;直方图绘制注意事项:a. 抽取的样本数量过小,将会产生较大误差,可信度低,也就失去了统计的意义。因此,样本数不应少于50个。b. 组数 k 选用不当,k 偏大或偏小,都会造成对分布状态的判断有误。c. 直方图一般适用于计量值数据,但在某些情况下也适用于计数值数据,这要看绘制直方图的目的而定。d. 图形不完整,标注不齐全,直方图上应标注:公差范围线、平均值 的位置(点画线表示)不能与公差中心M相混淆;图的右上角标出:N、S、C p或 CPK.制作频数分布直方图的方法:集中和记录数据,求出其最大值和最小值。
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 第六章数据的收集与整理 考点详解 第六 数据 收集 整理 考点 详解
限制150内