中考第一轮复习:二次函数说课材料.ppt
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_05.gif)
《中考第一轮复习:二次函数说课材料.ppt》由会员分享,可在线阅读,更多相关《中考第一轮复习:二次函数说课材料.ppt(23页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、中考第一轮复习:二次函中考第一轮复习:二次函数数二次函数考点二次函数考点1、二次函数的定义、二次函数的定义2、二次函数的图象及性质、二次函数的图象及性质3、求解析式的三种方法、求解析式的三种方法4、a,b,c符号的确定符号的确定5、抛物线的平移法则、抛物线的平移法则6、二次函数与一元二次方程的关系、二次函数与一元二次方程的关系7、二次函数的综合运用、二次函数的综合运用1、二次函数的定义、二次函数的定义定义:定义:y=axbxc(a、b、c 是常数,是常数,a 0)定义要点:定义要点:a 0 l 最高次数为最高次数为2 l 代数式一定是整式代数式一定是整式l练习:练习:1、y=-x,y=2x-2
2、/x,y=100-5x,y=3x-2x+5,其中是二次函数的有其中是二次函数的有_个。个。2.当当m=_时时,函数函数y=(m+1)-2+1 是二次函数?是二次函数?222、二次函数的图象及性质、二次函数的图象及性质抛物线抛物线顶点坐标顶点坐标对称轴对称轴位置位置开口方向开口方向增减性增减性最值最值y=axy=ax2 2+bx+c+bx+c(a0)y=axy=ax2 2+bx+c+bx+c(a0,开口向上开口向上a0,开口向下开口向下在对称轴的左侧在对称轴的左侧,y随着随着x的增大而减小的增大而减小.在对称轴的右侧在对称轴的右侧,y随着随着x的增大而增的增大而增大大.在对称轴的左侧在对称轴的左
3、侧,y随着随着x的增大而增大的增大而增大.在对称轴的右侧在对称轴的右侧,y随着随着x的增大而减的增大而减小小.xy0 xy0练习:练习:(1)求抛物线开口方向,对称轴和顶点)求抛物线开口方向,对称轴和顶点M的坐标。的坐标。(2)设抛物线与)设抛物线与y轴交于轴交于C点,与点,与x轴交于轴交于A、B两两点,求点,求C,A,B的坐标。的坐标。(3)x为何值时,为何值时,y随的增大而减少,随的增大而减少,x为何值时,为何值时,y有最大(小)值,这个最大(小)值是多少?有最大(小)值,这个最大(小)值是多少?(4)x为何值时,为何值时,y0?已知二次函数已知二次函数2、已知抛物线顶点坐标(、已知抛物线
4、顶点坐标(h,k),通常设),通常设抛物线解析式为抛物线解析式为_3、已知抛物线与、已知抛物线与x 轴的两个交点轴的两个交点(x1,0)、(x2,0),通常设解析式为通常设解析式为_1、已知抛物线上的三点,通常设解析式为、已知抛物线上的三点,通常设解析式为_y=ax2+bx+c(a0)y=a(x-h)2+k(a0)y=a(x-x1)(x-x2)(a0)3、求抛物线解析式的三种方法、求抛物线解析式的三种方法练习练习 1、二次函数、二次函数y=x2+2x+1写成顶点式为:写成顶点式为:_,对称轴为,对称轴为_,顶点为,顶点为_12y=(x+2)2-112x=-2(-2,-1)2、已知二次函数、已知
5、二次函数y=-x2+bx-5的图象的图象的顶点在的顶点在y轴上,则轴上,则b=_。1202、根据下列条件,求二次函数的解析式。、根据下列条件,求二次函数的解析式。(1)、图象经过、图象经过(0,0),(1,-2),(2,3)三点;三点;(2)、图象的顶点、图象的顶点(2,3),且经过点且经过点(3,1);4、a,b,c符号的确定符号的确定a a决定开口方向:决定开口方向:a a时开口向上,时开口向上,a a时开口向下时开口向下a a、b b同时决定对称轴位置:同时决定对称轴位置:a a、b b同号同号时时对称轴在对称轴在y y轴轴左侧左侧a a、b b异号异号时时对称轴在对称轴在y y轴轴右侧
6、右侧b b时时对称轴是对称轴是y y轴轴c c决定抛物线与决定抛物线与y y轴的交点:轴的交点:c c时抛物线交于时抛物线交于y y轴的正半轴轴的正半轴c c时抛物线时抛物线过原点过原点c c时抛物线交于时抛物线交于y y轴的负半轴轴的负半轴决定抛物线与决定抛物线与x x轴的交点轴的交点:时时抛物线与抛物线与x x轴有两个交点轴有两个交点时时抛物线与抛物线与x x轴有一个交点轴有一个交点 时时抛物线与抛物线与x x轴没有交点轴没有交点(上正、下负)上正、下负)(左同、右异左同、右异)(上正、下负上正、下负)=b b2 2-4ac-4ac 练习练习:已知二次函数的图象如图所示,下列结论:已知二次
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 中考 第一轮 复习 二次 函数 材料
![提示](https://www.taowenge.com/images/bang_tan.gif)
限制150内