《第七节函数项级数的一致收敛性.doc》由会员分享,可在线阅读,更多相关《第七节函数项级数的一致收敛性.doc(5页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、第七节 函数项级数的一致收敛性分布图示 引例(讲义例1) 一致收敛的概念 例2 例3 魏尔斯特拉斯判别法 例4 例5一致收敛级数的基本性质 定理2 定理3 定理4幂级数的一致收敛性 定理5 定理6 内容小结 课堂练习 习题127 返回内容要点 一、一致收敛的概念:函数项级数在收敛域上收敛于和,指的是它在上的每一点都收敛,即对任意给定的及收敛域上的每一点,总相应地存在自然数,使得当时,恒有.一般来说,这里的不仅与有关,而且与也有关. 如果对某个函数项级数能够找到这样的一个只与有关而不依赖于的自然数,则当时,不等式对于区间上每一点都成立,这类函数项级数就是所谓的一致收敛的级数.定义1 设函数项级数
2、在区间上收敛于和函数, 如果对任意给定的,都存在着一个与无关的自然数N, 使得当时, 对区间I上的一切x恒有,则称该函数项级数在区间I上一致收敛于和,此时也称函数序列在区间I上一致收敛于. 二、定理1(魏尔斯特拉斯判别法)如果函数项级数在区间I上满足条件:(1) (2)正项级数收敛.则该函数项级数在区间I上一致收敛. 三、一致收敛级数的基本性质定理2 如果级数的各项在区间上都连续,且级数在区间上一致收敛于 则在上也连续.定理 3 设在上连续,且级数在区间上一致收敛于,则存在,且级数在上可以逐项积分,即 (7.2)其中 且上式右端的级数在上也一致收敛.定理4 如果级数在区间上收敛于和, 它的各项
3、都有连续导数,并且级数在上一致收敛,则级数在上也一致收敛,且可逐项求导,即有 (7.3) 四、幂级数的一致收敛性定理5 如果幂级数的收敛半径为 则此级数在内的任一闭区间上一致收敛.定理 6 如果幂级数的收敛半径为则其和函数在内可导,且有逐项求导公式逐项求导后所得到的幂级数与原级数有相同的收敛半径.例题选讲一致收敛的概念例1(E01)考察函数项级数的和函数的连续性.解 因为该级数每一项都在是连续的,且其部分和故该级数的和函数 易见,和函数在处间断.注:本例表明:即使函数项级数的每一项都在a, b上连续,并且级数在a, b上收敛,但其和函数却不一定在a, b上连续;同样也可举例说明,函数项级数的每
4、一项的导数及积分所成的级数的和也不一定等于它们的和函数的导数及积分. 那么在什么条件下,我们才能够从级数每一项的连续性得出它的和函数的连续性,从级数的每一项的导数及积分所成的级数之和得出原级数的和函数的导数及积分呢? 要回答这个问题,就需要引入函数项级数的一致收敛性概念.例2(E02)研究级数在区间上的一致收敛性.解 当时,有 由于若要只要于是对任给的取当时,对于一切都有因此, 级数在上一致收敛.例3(E03)研究级数在区间0,1上的一致收敛性.解 由于于是取不论多大,主要取就有因此,级数在上收敛,但不一致收敛.例4(E04)证明级数在上一致收敛.证 因为在内而正项级数收敛,故由魏尔斯特拉斯判
5、别法知,题设级数在内一致收敛.例5(E05)判别级数在上是否一致收敛.解 因为所以又级数收敛,故级数在上一致收敛.课堂练习1. 研究级数在区间上的一致收敛性.魏尔斯特拉斯(Weierstrass, Karl Wilhelm,18151897)魏尔斯特拉斯德国数学家,1815年10月31日生于德国威斯特伐利亚地区的奥斯登费尔特;1897年2月19日卒于柏林。魏尔斯特拉斯的父亲威廉是一名政府官员,受过高等教育,颇具才智,但对子女相当专横。魏尔斯特拉斯11岁时丧母,翌年其父再婚。他有一弟二妹;两位妹妹终身未身未嫁,后来一直在生活上照料终身未娶的魏尔斯特拉斯。威廉要孩子长大后进入普鲁士高等文官阶层,因
6、而于1834年8月把魏尔斯特拉斯送往波恩大学攻读财务与管理,使其学到充分的法律、经济和管理知识,为谋得政府高级职位创造条件。魏尔斯特拉斯不喜欢父亲所选专业,立志终身研究数学,并令人惊讶地放弃成为法学博士候选人,因此在离开波恩大学时,他没有取得学位。在父亲的一位朋友的建议下,他被送到一所神学哲学院,然后参加中学教师资格国家考试,考试通过后在中学任教,此期间,他写了4篇直到他的全集刊印时才问世的论文,这些论文已显示了他建立函数论的基本思想和结构。1853年夏他在父亲家中度假,研究阿贝尔和雅可比留下的难题,精心写作关于阿贝尔函数的论文。这就是1854年发表于克雷尔杂志上的“阿贝尔函数论”。这篇出自一
7、个名不见经传的中学教师的杰作,引起数学界瞩目。1855年秋,魏尔期特拉斯被提升为高级教师并享受一年研究假期。1856年6月14日,柏林皇家综合科学校任命他为数学教授;在E.E.库默尔的推荐下,柏林大学聘任他为副教授,他接受了聘书。11月19日,他当选为柏林科学院院士。1864年成为柏林大学教授。在柏林大学就任后,魏尔斯特拉斯即着手系统建立数学分析基础,并进一步研究椭圆函数论与阿贝尔函数论。这些工作主要是通过他在该校讲授的大量课程完成的。几年后他就名闻名遐迩,成为德国以至全欧洲知名度最高的数学教授。1873年他出任柏林大学校长,从此成为大忙人。除教学外,公务几乎占去了他全部时间,使他疲乏不堪。紧张的工作影响了他的健康,但其智力未见衰退。他的70年诞庆典规模颇大,遍布全欧各地的学生赶来向他致敬。10年后80大寿庆典更加降重,在某种程度上他简直被看作德意志的民族英雄。1897年初,他染上流行性感冒,后转为肺炎,终至不治,于2月19日溘然上逝,享年82岁。除柏林科学院外,魏尔斯特拉斯还是格丁根皇家科学学会会员(1856)、巴黎科学院院士(1868)、英国皇家学会会员(1881)。魏尔斯特拉斯是数学分析算术化的完成者、解析函数论的奠基人,无与伦比的大学数学教师。
限制150内