《一次函数的图象(一)教案.doc》由会员分享,可在线阅读,更多相关《一次函数的图象(一)教案.doc(3页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、一次函数的图象(一)教学目标知识与技能目标1了解一次函数的图象是一条直线, 能熟练作出一次函数的图象过程与方法目标1经历函数图象的作图过程,初步了解作函数图象的一般步骤2已知函数的代数表达式作函数的图象,培养学生数形结合的意识和能力情感、态度与价值观目标1经历作图过程,归纳总结作函数图象的一般步骤,发展学生的总结概括能力2在探究活动中发展学生的合作意识和探究能力教学重点熟练地作一次函数的图象理解、归纳作函数图象的一般步骤:列表、描点、连线理解一次函数的代数表达式与图象之间的一一对应关系教学难点理解一次函数的代数表达式与图象之间的一一对应关系教法学法1、教学方法讲、议、练相结合。2、课前准备教具
2、:教材、多媒体课件。学具:教材、铅笔、直尺、练习本。教学过程一:情境引入Ot(分)S(米)8004005一天,小明以80米/分的速度去上学,离家5分钟后,小明的父亲发现小明的语文书未带,立即以120米/分的速度去追小明,请问小明离家的距离S(米)与小明父亲出发的时间t(分)之间的函数关系式是怎样的?它是一次函数吗?S=80t+400(t0)下面的图象能表示上面问题中的S与t的关系吗?我们说,上面的图象是函数S=80t+400(t0)的图象,这就是我们今天要学习的主要内容:一次函数的图象。二:新知探索1.什么是函数的图象?xx54321Ox-1-21-21-1-312把一个函数的自变量x与对应的
3、因变量y的值分别作为点的横坐标和纵坐标,在直角坐标系内描出它的对应点,所有这些点组成的图形叫做该函数的图象例1 请作出一次函数y=2x+1的图象解:列表:x-2-1012y=2x+1-3-1135描点:以表中各组对应值作为点的坐标,在直角坐标系内描出相应的点连线:把这些点依次连结起来,得到y=2x+1的图象2.作一个函数的图象的三个步骤:列表,描点,连线3.做一做(1)作出一次函数y=2x+5的图象(2)在所作的图象上取几个点,找出它们的横坐标和纵坐标,并验证它们是否都满足关系y=2x+5请同学们以小组为单位,讨论下面的问题,把得出的结论写出来(1)满足关系式y=2x+5的x,y所对应的点(x
4、,y)都在一次函数y=2x+5的图象上吗?(2)一次函数y=2x+5的图象上的点(x,y)都满足关系式y=2x+5吗?(3)一次函数y=kx+b的图象有什么特点?明晰总结:1.一次函数的代数表达式与图象是一一对应的,即满足一次函数的代数表达式的x,y所对应的点(x,y)都在一次函数的图象上;2.一次函数的图象上的点(x,y)都满足一次函数的代数表达式一次函数y=kx+b的图象是一条直线,以后可以称一次函数y=kx+b的图象为直线y=kx+b3.一次函数y=kx+b的图象是一条直线画一次函数图象的简单方法:因为“两点确定一条直线 ”,所以画一次函数图象时可以只描出两个点就可以了例2 作出y=x+
5、2的图象解:列表x02y=-x-220过点(0,2)和(2,0)作直线,则这条直线就是y=-x-2的图象三:巩固练习练习1:在同一直角坐标系中分别作出y=x与y=3x+9的图象由上面的图象,你发现了什么?提示:由上面的图象我们发现,正比例函数的图象是一条经过原点的直线,一次函数y=kx+b的图象是一条经过(0,b)的直线当b大于0时,直线与y轴交于正半轴,当b小于0时,直线与y轴交于负半轴练习2:如果y+3与x-2成正比例,且x=1时,y=1(1)写出y与x之间的函数关系式;(2)画出函数的图象;(3)求当x=0时,y的值和y=0时,x的值四:课时小结(1)函数与图象之间是一一对应的关系;(2
6、)正比例函数的图象是一条经过原点的直线,一次函数y=kx+b的图象是一条经过(0,b)的直线(3)作一次函数图象时,只取两个点,就能很快作出五:拓展探究在前面所提出的问题中:(1)小明的父亲用多少时间可追上小明?(2)如果这个问题至小明父亲追上小明止,你能写t的准确的取值范围吗?请写出来;(3)请画出这个函数的图象;(4)若用S1(米)表示小明父亲离家的距离,请写出S1(米)与t(分)之间的函数关系式;在(2)的条件下,作出这个函数图象答案:(1)10分钟,(2)0t10,(3)作出的图象是一条线段,(4)S1=120t(0t10),作出的图象也是一条线段六:作业布置习题6.3 1,2,3六、
7、教学设计反思这节内容是学生第一次利用数形结合的思想去研究一次函数的图象,感到陌生是正常的在教学过程中教师应通过情境创设激发学生的学习兴趣,对函数与图象的对应关系应让学生动手去实践,去发现,对一次函数的图象是一条直线应让学生自己得出在得出结论之后,让学生能运用“两点确定一条直线”,很快作出一次函数的图象在巩固练习活动中,鼓励学生积极思考,提高学生解决实际问题的能力当然,根据学生状况,教学设计也应做出相应的调整。如第一环节:创设情境 引入课题,固然可以激发学生兴趣,但也可能容易让学生关注与代数表达式的寻求,甚至队部分学生形成一定的认知障碍,因此该环节也可以直接开门见山,直切主题,如提出问题:一次函数的代数形式是y=kx+b,那么,一个一次函数对应的图形具有什么特征呢?今天我们就研究一次函数对应的图形特征-一次函数图象。附:板书设计 一次函数的图象(一)函数的图象 做一做 想一想作函数图象的步骤一次函数的图象是一条直线 暂时性板书保留性板书3
限制150内