九年级数学上册教案(北师大版).doc





《九年级数学上册教案(北师大版).doc》由会员分享,可在线阅读,更多相关《九年级数学上册教案(北师大版).doc(83页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、优质文本第一章 特殊平行四边形1.1 菱形的性质与判定一 学习目标:通过折、剪纸张的方法,探索菱形独特的性质。通过学生间的交流、计论、分析、类比、归纳、运用已学过的知识总结菱形的特征。教学重点:菱形的概念和菱形的性质,菱形的面积公式的推导。教学难点:菱形的性质的理解及菱形性质的灵活运用。学习过程:活动一:自学课本例题以上的内容,完成以下问题:?1. 如何从一个平行四边形中剪出一个菱形来?菱形平行四边形 的四边形叫做菱形,生活中的菱形有 。2. 按探究步骤剪下一个四边形。所得四边形为什么一定是菱形?菱形为什么是轴对称图形?有 对称轴。 图中相等的线段有: 图中相等的角有: 你能从菱形的轴对称性中
2、得到菱形所具有的特有的性质吗?自己完成证明。性质:证明:活动二:比照菱形与平行四边形的对角线菱形的对角线:平行四边的对角线:活动三:菱形性质的应用1.菱形的两条对角线的长分别是6cm和8cm,求菱形的周长和面积。2.如图,菱形花坛ABCD的边长为20cm,ABC=60沿菱形的两条对角线修建了两条小路AC和BD,求两条小路的长和花坛的面积。课效检测:一、填空1菱形的两条对角线长分别是12cm,16cm,它的周长等于 ,面积等于 。2菱形的一条边与它的两条对角线所夹的角比是3:2,菱形的四个内角是 。 3:菱形的周长是20cm,两个相邻的角的度数比为1:2,那么较短的对角线长是 。4:菱形的周长是
3、52 cm,一条对角线长是24 cm,那么它的面积是 。二、解答题:如图,在菱形ABCD中,周长为8cm,BAD=1200 对角线AC,BD交于点O,求这个菱形的对角线长和面积。教学设计反思本节课的主要教学内容为菱形的定义和性质。学生已经学习了平行四边形的性质,这是本节的知识根底。关于菱形的定义和性质,就是在平行四边形的根底上,进一步强化条件得到的。1.1 菱形的性质与判定二教学目标:1探索并掌握菱形的判定方法,积累经验,并能综合运用,形成解决问题的能力;2经历菱形的判定方法的探索过程,在活动中开展合情推理意识和主动探究的习惯,初步掌握说理的根本方法,开展有条理表达的能力.3通过设置问题情境丰
4、富学生的生活经验,激发学生学习数学和应用数学的兴趣和意识.教学重点:菱形的判定方法.教学难点:菱形的判定方法的综合运用.教学设计:模仿-猜测-论证-运用教学过程:一、知识回忆菱形的定义:有一组邻边相等的平行四边形叫做菱形菱形的性质:1 四条边都相等; 2 两条对角线互相垂直; 3 菱形是轴对称图形。二、新课学习1. 思考(1):除了运用菱形的定义,你能找出判定菱形的其他方法吗?猜测1:如果一个平行四边形的两条对角线互相垂直,那么这个平行四边形是菱形。:平行四边形ABCD中,对角线AC、BD互相垂直.求证:四边形ABCD是菱形2.得出结论:判定定理1 对角线互相垂直的平行四边形是菱形3.实际应用
5、:例题1:如图19 34,平行四边形ABCD的对角线AC的垂直平分线与边AD、BC分别交于点E、F,求证四边形AFCE是菱形4.思考2:除了运用对角线,你还有其他判定菱形的方法吗?猜测2:四边相等的四边形是菱形:如图,四边形ABCD,AB=BC=CD=DA求证:四边形ABCD是菱形 思考:这里的条件能否再减少一些呢?能否类似对矩形的讨论那样,有三条边相等的四边形就是菱形了呢?猜一猜,并试着画一画,你就会知道,这个结论是不成立的5.得出结论:判定定理2 四条边都相等的四边形是菱形.三、随堂练习1、用两个边长为a的等边三角形纸片拼成的四边形是.等腰梯形.正方形.矩形.菱形2、以下说法中正确的选项是
6、、有两边相等的平行四边形是菱形 、两条对角线互相垂直平分的四边形是菱形、两条对角线相等且互相平分的四边形是菱形 、四个角相等的四边形是菱形四、课堂小结判定四边形是菱形共有哪几种方法?五、板书设计 课题复习 判定1. 判定2. 例1. 判定3.探究 例2. 学 生 板 演 六、布置作业 教材P7 习题1.2 1、2、3七、教学反思本节课,课前布置的任务为本节课的探究做了有效的铺垫,学生资源的灵活运用提高了学生参与探究的兴趣,在证明思路的分析过程中体会了逆向思维、一题多解等的数学思想,另外,学生通过经历“实验猜测证明应用的探索过程提高了自身的科学素养。1.2 矩形的性质与判定一教学目标知识与技能:
7、了解矩形的有关概念,理解并掌握矩形的有关性质过程与方法:经过探索矩形的概念和性质的过程,开展学生合情推理意识;情感态度与价值观:培养严谨的推理能力,以及自主合作精神;体会逻辑推理的思维价值重难点、关键重点:掌握矩形的性质,并学会应用 难点:理解矩形的特殊性关键:把握平行四边形的演变过程,迁移到矩形概念与性质上来,明确矩形是特殊的平行四边形教学准备教师准备:投影仪,收集有关矩形的图片,制作教具学生准备:复习平行四边形性质,预习矩形这节内容学法解析1认知起点:已经学习了三角形、平行四边形、菱形,积累了一定的经验的根底上学习本节课内容2知识线索:情境与操作平行四边形矩形矩形性质3学习方式:观察、操作
8、、感知其演变,以合作交流的学习方式突破难点教学过程一、联系生活,形象感知矩形是平行四边形的特例,属于平行四边形,因此它具有平行四边形的所有性质由此归纳直角三角形的一个性质:直角三角形斜边上的中线等于斜边的一半 二、范例点击,应用所学例1 如图,矩形ABCD的两条对角线相交于O,AOB=60,AB=4cm,求矩形对角线的长投影显示【问题探究】投影显示如图,ABC中,A=2B,CD是ABC的高,E是AB的中点,求证:DE=1/2AC思路点拨:此题可从E是AB的中点切入,考虑应用三角形中位线定理应用三角形中位线必需找到另一个中点分析可知:可以取BC中点F,也可以取AC的中点G为尝试 三、随堂练习,稳
9、固深化 【探研时空】:如图,从矩形ABCD的顶点C作对角线BD的垂线与BAD的平分线相交于点E求证:AC=CE 四、课堂总结,开展潜能 1矩形定义:有一个角是直角的平行四边形叫做矩形,因此,矩形是平行四边形的特例,具有平行四边形所有性质 2性质归纳: 1边的性质:对边平行且相等 2角的性质:四个角都是直角 3对角线性质:对角线互相平分且相等 4对称性:矩形是轴对称图形 教学设计反思:本节课依据新课标的要求,设计的每个环节都是以学生为主体,在学生已有的知识经验的根底上,让学生自己动手探究完成,以便提高学生的探索创新思维和创造能力。1.2 矩形的性质与判定二教学目标:1理解并掌握矩形的判定方法2使
10、学生能应用矩形定义、判定等知识,解决简单的证明题和计算题,进一步培养学生的分析能力。重点、难点:1重点:矩形的判定2难点:矩形的判定及性质的综合应用例题的意图分析 本节课的三个例题都是补充题,例1的一组判断题是为了让学生加深理解判定矩形的条件,老师们在教学中还可以适当地再增加一些判断的题目;例2是利用矩形知识进行计算;例3是一道矩形的判定题,三个题目从不同的角度出发,来综合应用矩形定义及判定等知识的课堂引入1什么叫做平行四边形?什么叫做矩形?2矩形有哪些性质?3矩形与平行四边形有什么共同之处?有什么不同之处?4事例引入:小华想要做一个矩形像框送给妈妈做生日礼物,于是找来两根长度相等的短木条和两
11、根长度相等的长木条制作,你有什么方法可以检测他做的是矩形像框吗?看看谁的方法可行?通过讨论得到矩形的判定方法矩形判定方法1:对角钱相等的平行四边形是矩形矩形判定方法2:有三个角是直角的四边形是矩形指出:判定一个四边形是矩形,知道三个角是直角,条件就够了因为由四边形内角和可知,这时第四个角一定是直角例习题分析 例1补充以下各句判定矩形的说法是否正确?为什么? 1有一个角是直角的四边形是矩形; 2有四个角是直角的四边形是矩形; 3四个角都相等的四边形是矩形; 4对角线相等的四边形是矩形; 5对角线相等且互相垂直的四边形是矩形; 6对角线互相平分且相等的四边形是矩形; 7对角线相等,且有一个角是直角
12、的四边形是矩形; 8一组邻边垂直,一组对边平行且相等的四边形是矩形; 9两组对边分别平行,且对角线相等的四边形是矩形 () 指出: l所给四边形添加的条件不满足三个的肯定不是矩形;2所给四边形添加的条件是三个独立条件,但假设与判定方法不同,那么需要利用定义和判定方法证明或举反例,才能下结论例2 补充平行四边形ABCD的对角线AC、BD相交于点O,AOB是等边三角形,AB=4 cm,求这个平行四边形的面积分析:首先根据AOB是等边三角形及平行四边形对角线互相平分的性质判定出ABCD是矩形,再利用勾股定理计算边长,从而得到面积值 例3 补充:如图1,ABCD的四个内角的平分线分别相交于点E,F,G
13、,H求证:四边形EFGH是矩形分析:要证四边形EFGH是矩形,由于此题目可分解出根本图形,如图2,因此,可选用“三个角是直角的四边形是矩形来证明随堂练习1选择以下说法正确的选项是 A有一组对角是直角的四边形一定是矩形B有一组邻角是直角的四边形一定是矩形C对角线互相平分的四边形是矩形 D对角互补的平行四边形是矩形2:如图,在ABC中,C90,CD为中线,延长CD到点E,使得 DECD连结AE,BE,那么四边形ACBE为矩形课后练习1工人师傅做铝合金窗框分下面三个步骤进行: 先截出两对符合规格的铝合金窗料如图,使ABCD,EFGH; 摆放成如图的四边形,那么这时窗框的形状是 形,根据的数学道理是:
14、 ; 将直角尺靠紧窗框的一个角如图,调整窗框的边框,当直角尺的两条直角边与窗框无缝隙时如图,说明窗框合格,这时窗框是 形,根据的数学道理是: ;2在RtABC中,C=90,AB=2AC,求A、B的度数教学反思1灵活处理教材2. 充分给学生以时间和空间3. 应当注意的问题1.2 矩形的性质与判定三【设计理念】 根据新课程标准要求,学生学习数学的重要方式是动手实践、自主探索与合作交流。学生是学习活动的主体,教师是学生学习的组织者、引导者与合作者。结合九年级学生的实际情况,本节课教学过程的教学设计分以下几点:1、充分考虑了为学生提供动手实践、研究探讨的时间与空间,让学生经历知识发生、开展的全过程,并
15、能学以致用。2、根据本节课的特点,适当、适量设置例题、习题,使整个课堂教学设计表达了活动性、开放性、探究性、合作性、生成性。3、教师始终起到启发、点拨、纠偏、示范的作用。4、学生积极参与到课堂教学中来,动手动口动脑相结合,使他们“听有所思,“学有所获【教材分析】1在教材中的地位与作用 生活中随处可见矩形,矩形的应用非常广泛。前面两节学习了矩形的性质与判定,为以后进一步研究其他图形奠定根底,与矩形相关的问题也是考查的热点。 2对教材的处理 本节课主要是应用矩形的性质定理与判定定理解决相关问题,利用这节课来培养学生自主学习、合作学习、主动获取知识的能力。转变学生的学习方式,使学生经历实践、推理、交
16、流等数学活动过程,亲身体验数学思想方法及数学观念,培养学生能力,促进学生开展。在选题时,遵循学生的认识规律,照顾学生的接受能力,配置由浅入深、由易到难的练习题。教学中,通过有效措施让学生在对解决问题过程的反思中,获得解决问题的经验,进行富有个性的学习。 3教学目标 知识与技能:通过探索与交流,已经得出矩形的判定定理,使学生亲身经历知识的发生过程,并会运用定理解决相关问题。通过开放式命题,尝试从不同角度寻求解决问题的方法。 过程与方法:通过动手实践、合作探索、小组交流,培养学生的逻辑推理能力。 情感态度与价值观:在良好的师生关系下,创设轻松的学习气氛,使学生在数学活动中获得成功的体验,增强自信心
17、,在合作学习中增强集体责任感。 4.教学重点与难点 重点:理解矩形判定定理的应用 难点:矩形判定定理的应用【教学方法与教学手段】1教学方法探究发现、合作学习的方法2教学手段采用多媒体辅助教学,促进学生自主学习,提高学习效率。【教学过程】环节一:回忆交流,温故知新 通过上节课对矩形的学习,谁能答复以下问题 1、矩形是特殊的平行四边形,它具有哪些性质?通过对矩形定义及性质的回忆,引出判定矩形除了定义外,还有哪些方法,导入新课。 性质定理:1矩形的四个角都是直角;2矩形的对角线相等。2、判定四边形是矩形的方法是什么?用定义1是不是平行四边形,2再看它有无直角。 判定定理:1对角线相等的平行四边形是矩
18、形;2有三个角是直角的四边形是矩形。环节二:应用辨析,稳固定理教师讲解教材P16例3,以加深学生对矩形性质定理的应用的认识;讲解P14例4,加深学生对矩形判定定理的应用的认识。环节三:课堂练习,稳固提高1. 如图,EF是四边形ABCD的对角线的交点O,且分别交AB、CD于E、F,那么阴影局部的面积是矩形ABCD的面积的 2. 矩形ABCD的两条对称轴为EF,MN,其中E、F、M、N分别在 AB、 DC、AD、BC上,连结ME,EN,NF,FM,AB= cm,BC= cm,那么四边形ENFM的周长和面积各是多少?(练习一,二是课内练习,主要为加强学生对所学定理的理解和掌握,使学生能将给出的条件转
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 九年级 数学 上册 教案 北师大

限制150内