应用回归分析-第5章课后习题参考复习资料.doc
《应用回归分析-第5章课后习题参考复习资料.doc》由会员分享,可在线阅读,更多相关《应用回归分析-第5章课后习题参考复习资料.doc(8页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、优质文本第5章 自变量选择与逐步回归思考与练习参考答案5.1 自变量选择对回归参数的估计有何影响?答: 回归自变量的选择是建立回归模型得一个极为重要的问题。如果模型中丢掉了重要的自变量, 出现模型的设定偏误,这样模型容易出现异方差或自相关性 ,影响回归的效果;如果模型中增加了不必要的自变量, 或者数据质量很差的自变量, 不仅使得建模计算量增大, 自变量之间信息有重叠,而且得到的模型稳定性较差,影响回归模型的应用。5.2自变量选择对回归预测有何影响?答:当全模型m元正确采用选模型p元时,我们舍弃了个自变量,回归系数的最小二乘估计是全模型相应参数的有偏估计,使得用选模型的预测是有偏的,但由于选模型
2、的参数估计、预测残差和预测均方误差具有较小的方差,所以全模型正确而误用选模型有利有弊。 中选模型p元正确采用全模型m元时,全模型回归系数的最小二乘估计是相应参数的有偏估计,使得用模型的预测是有偏的,并且全模型的参数估计、预测残差和预测均方误差的方差都比选模型的大,所以回归自变量的选择应少而精。5.3 如果所建模型主要用于预测,应该用哪个准那么来衡量回归方程的优劣?答:如果所建模型主要用于预测,那么应使用统计量到达最小的准那么来衡量回归方程的优劣。5.4 试述前进法的思想方法。答:前进法的根本思想方法是:首先因变量Y对全部的自变量x12建立m个一元线性回归方程, 并计算F检验值,选择偏回归平方和
3、显著的变量F值最大且大于临界值进入回归方程。每一步只引入一个变量,同时建立m1个二元线性回归方程,计算它们的F检验值,选择偏回归平方和显著的两变量变量F值最大且大于临界值进入回归方程。在确定引入的两个自变量以后,再引入一个变量,建立m2个三元线性回归方程,计算它们的F检验值,选择偏回归平方和显著的三个变量F值最大进入回归方程。不断重复这一过程,直到无法再引入新的自变量时,即所有未被引入的自变量的F检验值均小于F检验临界值F(11),回归过程结束。5.5 试述后退法的思想方法。答:后退法的根本思想是:首先因变量Y对全部的自变量x12建立一个m元线性回归方程, 并计算t检验值和F检验值,选择最不显
4、著P值最大且大于临界值的偏回归系数的自变量剔除出回归方程。每一步只剔除一个变量,再建立m1元线性回归方程,计算t检验值和F检验值,剔除偏回归系数的t检验值最小P值最大的自变量,再建立新的回归方程。不断重复这一过程,直到无法剔除自变量时,即所有剩余p个自变量的F检验值均大于F检验临界值F(11),回归过程结束。5.6前进法、后退法各有哪些优缺点?答:前进法的优点是能够将对因变量有影响的自变量按显著性一一选入,计算量小。前进法的缺点是不能反映引进新变量后的变化,而且选入的变量就算不显著也不能删除。后退法的优点是是能够将对因变量没有显著影响的自变量按不显著性一一剔除,保存的自变量都是显著的。后退法的
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 应用 回归 分析 课后 习题 参考 复习资料
限制150内