弹性力学与有限元分析试题及其答案.doc
《弹性力学与有限元分析试题及其答案.doc》由会员分享,可在线阅读,更多相关《弹性力学与有限元分析试题及其答案.doc(19页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、优质文本2012年度弹性力学与有限元分析(fnx)复习题及其答案(绝密试题)一、填空题1、弹性力学研究弹性体由于受外力作用、边界约束或温度改变等原因而发生的应力、形变和位移。2、在弹性力学中规定,线应变以伸长时为正,缩短时为负,与正应力的正负号规定相适应。3、在弹性力学中规定,切应变以直角变小时为正,变大时为负,与切应力的正负号规定相适应。4、物体受外力以后,其内部将发生内力,它的集度称为应力。与物体的形变和材料强度直接有关的,是应力在其作用截面的法线方向和切线方向的分量,也就是正应力和切应力。应力及其分量的量纲是L-1MT-2。5、弹性力学的根本假定为连续性、完全弹性、均匀性、各向同性。6、
2、平面问题分为平面应力问题和平面应变问题。7、一点处的应力分量MPa,MPa, MPa,那么主应力150MPa,0MPa,。8、一点处的应力分量, MPa,MPa, MPa,那么主应力512 MPa,-312 MPa,-3757。9、一点处的应力分量,MPa,MPa, MPa,那么主应力1052 MPa,-2052 MPa,-8232。10、在弹性力学里分析问题,要考虑静力学、几何学和物理学三方面条件,分别建立三套方程。11、表示应力分量与体力分量之间关系的方程为平衡微分方程。12、边界条件表示边界上位移与约束,或应力与面力之间的关系式。分为位移边界条件、应力边界条件和混合边界条件。13、按应力
3、求解平面问题时常采用逆解法和半逆解法。14、有限单元法首先将连续体变换成为离散化结构,然后再用结构力学位移法进行求解。其具体步骤分为单元分析和整体分析两局部。15、每个单元的位移一般总是包含着两局部:一局部是由本单元的形变引起的,另一局部是由于其他单元发生了形变而连带引起的。16、每个单元的应变一般总是包含着两局部:一局部是与该单元中各点的位置坐标有关的,是各点不相同的,即所谓变量应变;另一局部是与位置坐标无关的,是各点相同的,即所谓常量应变。17、为了能从有限单元法得出正确的解答,位移模式必须能反映单元的刚体位移和常量应变,还应当尽可能反映相邻单元的位移连续性。18、为了使得单元内部的位移保
4、持连续,必须(bx)把位移模式取为坐标的单值连续函数,为了使得相邻单元的位移保持连续,就不仅要使它们在公共结点处具有相同的位移时,也能在整个公共边界上具有相同的位移。19、在有限单元法中,单元的形函数Ni在i结点Ni=1;在其他结点Ni=0及Ni=1。20、为了提高有限单元法分析的精度,一般可以采用两种方法:一是将单元的尺寸减小,以便较好地反映位移和应力变化情况;二是采用包含更高次项的位移模式,使位移和应力的精度提高。二、判断题请在正确命题后的括号内打“,在错误命题后的括号内打“1、连续性假定是指整个物体的体积都被组成这个物体的介质所填满,不留下任何空隙。2、均匀性假定是指整个物体的体积都被组
5、成这个物体的介质所填满,不留下任何空隙。3、连续性假定是指整个物体是由同一材料组成的。4、平面应力问题与平面应变问题的物理方程是完全相同的。5、如果某一问题中,只存在平面应力分量,且它们不沿z方向变化,仅为x,y的函数,此问题是平面应力问题。6、如果某一问题中,只存在平面应变分量,且它们不沿z方向变化,仅为x,y的函数,此问题是平面应变问题。7、表示应力分量与面力分量之间关系的方程为平衡微分方程。8、表示位移分量与应力分量之间关系的方程为物理方程。9、当物体的形变分量完全确定时,位移分量却不能完全确定。10、当物体的位移分量完全确定时,形变分量即完全确定。11、按应力求解平面问题时常采用位移法
6、和应力法。12、按应力求解平面问题,最后可以归纳为求解一个应力函数。13、在有限单元法中,结点力是指单元对结点的作用力。14、在有限单元法中,结点力是指结点对单元的作用力。15、在平面三结点三角形单元的公共边界上应变和应力均有突变。 三、简答题1、简述材料力学和弹性力学在研究对象、研究方法方面的异同点。在研究对象方面,材料力学根本上只研究杆状构件,也就是长度远大于高度和宽度的构件;而弹性力学除了对杆状构件作进一步的、较精确的分析外,还对非杆状结构,例如板和壳,以及挡土墙、堤坝、地基等实体结构加以研究。在研究方法方面,材料力学研究杆状构件,除了从静力学、几何学、物理学三方面进行分析以外,大都引用
7、了一些关于构件的形变状态或应力分布的假定,这就大简化了数学推演,但是,得出的解答往往是近似的。弹性(tnxng)力学研究杆状构件,一般都不必引用那些假定,因而得出的结果就比拟精确,并且可以用来校核材料力学里得出的近似解答。2、简述弹性力学的研究方法。答:在弹性体区域内部,考虑静力学、几何学和物理学三方面条件,分别建立三套方程。即根据微分体的平衡条件,建立平衡微分方程;根据微分线段上形变与位移之间的几何关系,建立几何方程;根据应力与形变之间的物理关系,建立物理方程。此外,在弹性体的边界上还要建立边界条件。在给定面力的边界上,根据边界上微分体的平衡条件,建立应力边界条件;在给定约束的边界上,根据边
8、界上的约束条件建立位移边界条件。求解弹性力学问题,即在边界条件下根据平衡微分方程、几何方程、物理方程求解应力分量、形变分量和位移分量。3、弹性力学中应力如何表示?正负如何规定?答:弹性力学中正应力用表示,并加上一个下标字母,说明这个正应力的作用面与作用方向;切应力用表示,并加上两个下标字母,前一个字母说明作用面垂直于哪一个坐标轴,后一个字母说明作用方向沿着哪一个坐标轴。并规定作用在正面上的应力以沿坐标轴正方向为正,沿坐标轴负方向为负。相反,作用在负面上的应力以沿坐标轴负方向为正,沿坐标轴正方向为负。4、简述平面应力问题与平面应变问题的区别。答:平面应力问题是指很薄的等厚度薄板,只在板边上受有平
9、行于板面并且不沿厚度变化的面力,同时,体力也平行于板面并且不沿厚度变化。对应的应力分量只有,。而平面应变问题是指很长的柱形体,在柱面上受有平行于横截面并且不沿长度变化的面力,同时体力也平行于横截面并且不沿长度变化,对应的位移分量只有u和v5、简述圣维南原理。 如果把物体的一小局部边界上的面力,变换为分布不同但静力等效的面力主矢量相同,对于同一点的主矩也相同,那么,近处的应力分布将有显著的改变,但是远处所受的影响可以不计。6、简述按应力求解平面问题时的逆解法。答:所谓逆解法,就是先设定各种形式的、满足相容方程的应力函数;并由应力分量与应力函数之间的关系求得应力分量;然后再根据应力边界条件和弹性体
10、的边界形状,看这些应力分量对应于边界上什么样的面力,从而可以得知所选取的应力函数可以解决的问题。7、以三节点三角形单元为例,简述有限(yuxin)单元法求解离散化结构的具体步骤。1取三角形单元的结点位移为根本未知量。2应用插值公式,由单元的结点位移求出单元的位移函数。3应用几何方程,由单元的位移函数求出单元的应变。4应用物理方程,由单元的应变求出单元的应力。5应用虚功方程,由单元的应力出单元的结点力。6应用虚功方程,将单元中的各种外力荷载向结点移置,求出单元的结点荷载。7列出各结点的平衡方程,组成整个结构的平衡方程组。8、为了保证有限单元法解答的收敛性,位移模式应满足哪些条件?答:为了保证有限
11、单元法解答的收敛性,位移模式应满足以下条件:1位移模式必须能反映单元的刚体位移;2位移模式必须能反映单元的常量应变;3位移模式应尽可能反映位移的连续性。9、在有限单元法中,为什么要求位移模式必须能反映单元的刚体位移?每个单元的位移一般总是包含着两局部:一局部是由本单元的形变引起的,另一局部是本单元的形变无关的,即刚体位移,它是由于其他单元发生了形变而连带引起的。甚至在弹性体的某些部位,例如在靠近悬臂梁的自由端处,单元的形变很小,单元的位移主要是由于其他单元发生形变而引起的刚体位移。因此,为了正确反映单元的位移形态,位移模式必须能反映该单元的刚体位移。10、在有限单元法中,为什么要求位移模式必须
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 弹性 力学 有限元分析 试题 及其 答案
限制150内