拟南芥花药基因调控网络的构建_焦清局.docx
《拟南芥花药基因调控网络的构建_焦清局.docx》由会员分享,可在线阅读,更多相关《拟南芥花药基因调控网络的构建_焦清局.docx(60页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、 学校代码: 10270 学号: 072200767 论 文 题 目 拟南芥花药基因调控网络的构建 学院信息与机电工程学院 专 业计算机应用技术 研究方向数字图像处理与模式识别 研究生姓名 焦清局 指 导 教 师 黄 继 风 完 成 日 期 二 零 一 零 年 四 月 拟南芥花药基因调控网络的构建 Construction of a Gene Regulatory Network For Arabidopsis Anther Candidate: Jiao Qingju Supervisor: Huang Jifeng Major: Computer Applied Technology Sp
2、ecialty: Digital Image Processing and Pattern Recognition 论文独创性声明 本论文是我个人在导师指导下进行的研究工作及取得的研究成果。论文中除 了特别加以标注和致谢的地方外,不包含其他人或机构己经发表或撰写过的研究 成果。其他同志对本研究的启发和所做的贡献均已在论文中做了明确的声明并表 示了谢意。 作 者 签 名 闩 期 ; M / p . 厂 / / 论文使用授权声明 本人完全了解上海师范大学有关保留、使用学位论文的规定,即:学校有权 保留送交论文的复印件,允许论文被査阅和借阅;学校可以公布论文的全部或部 分内容,可以采用影印、缩印或其
3、它手段保存论文。保密的论文在解密后遵守此 规定。 作者签名其清由导师签名考您八行期 : O 摘要 生物信息学是一门新兴的交叉学科,它需要生物学、计算机科学以及数学三 门学科的高级研究人员通力合作来完成。生物信息学以计算机、网络为工具,用 数学和信息科学的理论、方法和技术去研究生物大分子,发现生物分子信息的组 织规律。生物信息学的研究重点是 DNA 分子和蛋白质分子的各个方面,包括它 们的序列、结构和功能。而基因调控网络是功能基因组学研究的一个热点。一个 基因的表达受其他基因的调控或影响,而这个基因又调控或影响其他基因的表 达,这种相互调控或影响的关系构成了复杂的基因表达调控网络。在基因调控网
4、络中,基因的相互关系能帮助研究者更深入地认识真实的调控过程。对调控过程 的深刻了解,将会对药物研制和生物医学产生深远的影响。因此,基因调控网络 在研究基因 之间的调控关系及揭示复杂的生命现象方面有着重大的意义。 本文回顾了基因调控网络研究的历程以及现有的一些调控网络模型,像布尔 网络模型、静态和动态的贝叶斯模式、线性微分方程模型以及递归神经网络模型 等,并指出这些网络模型存在的缺点,以及一些文章对这些模型的改进。 模式植物拟南芥是研究基因调控网络的一种良好的材料,而拟南芥花药的发 育由复杂的基因网络所调控。至今为止,人们只是构建了小规模的花药调控网络, 而对大规模且精确的调控网络了解非常有限。
5、本文利用最大团算法整合基因表达 芯片数据与启动子序列分析的生物信息学方法构建拟南芥花药基因调控网络。基 于这种方法,一共预测到 6836 对基因调控关系对,其中 95 对为高可信的调控关 系对。在这 95 对基因中,有 5 对调控关系已被之前的实验验证。这些数据表明, 我们构建的基因调控网络是较为精确的,为研究拟南芥生长过程中的调控机制和 未知基因的功能提供了有意义的参考信息。 利用我们方法构建的基因调控网络不仅精确度较高,而且具有快速、高通量 的优势,可以建立一个大规模的基因调控网络。我们构建的基因调控网络为生物 学家建立真实的转录因子和靶基因之间的调 控关系提供了理论依据。而生物学家 的实
6、验结果反过来进一步验证了构建的基因调控网络,这种相互作用可以促进生 物信息学和生物学的快速发展。 关键词:拟南芥,花药,最大团,基因调控网络,基元,生物信息学 Abstract Bioinformatics is a new subject that is studied by scientists who master knowledge involving in biology, science of computer and mathematics. Based on computers and networks, people use the approach of mathemati
7、cs and informatics science to research biologic molecules and the regulatory mechanism between molecules in bioinformatics. Gene regulatory network is an active area of research in the post-genome research. The expression of a gene may be regulated or influenced by other genes, this gene in turn has
8、 the potential to regulate of influent additional genes. By identifying and organizing these transcriptional relationships, a gene regulatory network can be constructed. Understanding mechanisms of gene expression would not only facilitate the acquaintance of the process of real regulatory, but woul
9、d also provide valuable insight into the development of therapeutic drugs and the field of biomedicine in general. In addition, gene regulatory network also play an important role in revealing complicated phenomenon of lives because of the regulatory or influent relationships between genes in organi
10、sm. In this paper, first, we describe the history and model of some represent gene regulatory network, such as static and dynamic Bayesian network models, Boolean network models, Differential equation models and Neural network models. For these models, we further study their disadvantages and give s
11、ome papers that focuse on the design of effective methods. Arabidopsis thaliana, the model plant, is a good example of the challenges of network reconstruction. The growth of Arabidopsis anther is regulated by gene networks which are know rarely by researches. In the present paper, based on the Maxi
12、mum-clique algorithm, we used a bioinformatics approach that integrates the analysis of gene expression data with the prediction of transcription factor binding sites in the promoter regions, to construct a gene regulatory network. Using bioinformatics, a total of 6836 TF-gene pairs were analyzed, 9
13、5 of which were characterized as highly confident, and 5 were confirmed by previously published experimental data. These results suggest that the predictions by this model are reliable has the potential to improve our understanding of the role of these processes in plant development. Using the bioin
14、formatics method, a large-scale and more accurate gene regulatory network can be constructed. A significant advantage of this method is more efficient and has a higher throughput capacity. We hope that the gene regulatory network we built will provide academic guide that are used to predict the rela
15、tionships between target genes and TFs for biologists, while the experimental results can guide the construction of gene network. So, the mutual effects may lead to rapid development of bioinformatics and biology. Keywords: Arabidopsis, anther, Maximum-clique, gene regulatory network, motif, bioinfo
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 拟南芥 花药 基因 调控 网络 构建 焦清局
限制150内