《可持续生物除磷脱氮污水处理技术.docx》由会员分享,可在线阅读,更多相关《可持续生物除磷脱氮污水处理技术.docx(7页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、可持续生物除磷脱氮污水处理技术建筑网为建筑行业人士解答可持续生物除磷脱氮污水处理技术及相关内容,以控制富营养化为目的的氮、磷脱除已成为各国主要的奋斗目标。那么欧洲可持续生物除磷脱氮工艺技术基础是什么,反硝化除磷原理与工程实践具体包括哪些内容,反硝化除磷工艺的原理是什么,在此建筑网小编为你带来可持续生物除磷脱氮污水处理技术的内容介绍以供参考。当今世界,污水处理的主要对象为有机物(COD)、氨氮和磷酸盐。传统上,COD和氨氮的脱除一般由生物氧化和硝化/反硝化完成;磷酸盐或通过细菌的生物聚集、或靠化学沉淀去除。传统工艺存在以下弊端:COD氧化和硝化耗能巨大,且在COD氧化中,无形中失去贮存在COD内
2、的大量化学能(每kg COD约含1.4107J代谢热);反硝化与磷的生物聚集均需消耗COD;剩余污泥量大;耗能造成大量二氧化碳释放,并进入大气。污水排放标准的不断收紧是目前世界各国普遍的发展趋势;以控制富营养化为目的的氮、磷脱除已成为各国主要的奋斗目标。无疑,应付日趋严格的排放标准,传统工艺会因上述弊端而雪上加霜1。在此情形下,发展可持续污水处理工艺变得势在必行。所谓可持续污水处理工艺就是朝着最小的COD氧化、最低的CO2释放、最少的剩余污泥产量以及实现磷回收和处理水回用等方向努力。这就需要以较综合的方式来解决污水处理问题,即污水处理不应仅仅是满足单一的水质改善,同时也需要一并考虑污水及所含污
3、染物的资源化和能源化问题,且所采用的技术必须以低能量消耗(避免出现污染转移现象)、少资源损耗为前提。发展新颖的污水生物处理工艺依赖于在微生物学及生物化学方面的新发现或新认识。荷兰研究人员Mulder2在10年前发现了厌氧氨(氮)氧化现象。与此同时,南非、荷兰、日本等国科学家对生物摄/放磷代谢机理重新认识后确定了反硝化除磷新途径45。这两种新技术的研发与应用对发展可持续污水生物处理工艺具有划时代意义的推动作用。本文以厌氧氨氧化和反硝化除磷技术为蓝本,详细介绍它们的技术原理、工艺流程以及在欧洲的应用情况;在此基础之上提出一个以转换有机能源(甲烷)、回收磷化合物(鸟粪石)和回用处理水(非饮用目的)为
4、目标的可持续城市污水生物除磷脱氮技术推荐工艺。1、可持续生物除磷脱氮工艺技术基础目前欧洲以单一去除COD为目的的污水处理工艺已不多见,代之以除磷脱氮为主要对象的生物营养物去除(BNR,Biological Nutrient Removal)工艺。一方面,这是迫于污水排放标准不断提高的压力;另一方面,COD氧化以能消能,同可持续污水处理概念相悖。从这个意义上说,污水处理过程中应最大限度地降低COD消耗量并使过剩的COD甲烷化。这样一个概念对实现可持续污水处理起着举足轻重的作用。在污水生物除磷实践中,南非开普顿大学(UCT)研究人员最早发现专性好氧细菌不是唯一对磷的生物摄/放起作用的菌种,兼性反硝
5、化细菌也有着很强的生物摄/放磷现象3。反硝化细菌的生物摄/放磷作用被荷兰代尔夫特工业大学(TU Delft)和日本东京大学(UT )研究人员合作研究确认,并冠名为反硝化除磷(denitrifying dephosphatation)45。在磷的生物摄/放过程中,反硝化除磷细菌以硝酸氮取代氧作为电子接受体,也就是说反硝化除磷细菌能将反硝化脱氮和生物除磷这两个原本认为彼此独立的作用合二为一。显然,在结合的除磷脱氮过程中,COD和氧的消耗量均能得到相应节省。比较传统的专性好氧磷细菌去除工艺,反硝化除磷细菌能分别节省约50%和30%的COD与氧的消耗量,相应减少剩余污泥量50%4,6。在反硝化除磷过程
6、中由于COD需要量的大为减少,过剩的COD因此能被分离,并使之甲烷化,从而避免COD单一的氧化稳定(至CO2)。归因于曝气能量的减少,以及过剩COD甲烷化后能量的产生,这种综合的能量节约最终会导致释放到大气的CO2量明显减少。因此,具有反硝化除磷细菌富集的处理系统可以被视为可持续处理工艺。传统上,两个已得到充分确认的生物途径,硝化(NH 4NO3-)与反硝化 (NO3N2)被应用于污水处理的生物脱氮。这种传统生物脱氮途径从可持续角度看并不是最佳的,因为充分地氧化氨氮到硝酸氮首先要消耗大量能源(因曝气);其次,还需要有足够碳源 (COD)来还原硝酸氮到氮气。对这一传统脱氮途径的改进可借助于新近由
7、荷兰TU Delft研发的一种中温亚硝化技术SHARON来实现7。在亚硝化/反硝化脱氮途径中,亚硝酸氮为仅有的中间过渡形态;这一途径无论对氧化(NH 4NO2-)还是还原 (NO2-N2)均能起到最小量化的作用,意味着O2和COD消耗量的双重节约。显然,亚硝化 /反硝化脱氮途径可以成为一种可持续的脱氮技术。此外,荷兰TU Delft研究人员几乎在同一时期还试验确认了一种新的氨氮转换途径,这使得氨氮以亚硝酸氮作为电子接受体而被直接氧化至氮气成为可能2,7。这种厌氧条件下的氨氮氧化与亚硝化过程(如SHARON工艺)相结合在工程上能够实现氨氮的最短途径转换,这就意味着生物脱氮过程中能源与资源消耗量的
8、最小化完全可能。污水处理过程中氮的所有可能转换途径列于图1.与传统脱氮工艺相比较,很明显,由厌氧氨氧化与亚硝化工艺相结合的氮的完全自养转换方式是一种最可持续的污水脱氮途径。2.1 生物除磷代谢模型从印度研究人员Srinath等人于1959年首次提及污水生物除磷现象以来8,各国科学家对生物除磷机理进行了长达20余年的摸索研究。然而,早期生物除磷研究往往以实际污水处理工艺为主要研究对象,且注意力大多集中于好氧条件下的生物摄磷过程,并没有在意磷的厌氧释放同好氧摄取之间的关系。直到上世纪80年代初,荷兰研究人员Rensink才首次报道了好氧摄磷与厌氧放磷过程之间存在着某种必然联系9。在此基础上,生物除
9、磷的一个完整生化代谢模型才由后续一些科学家完善、定型。图2显示了这个已基本定型的生物除磷生化代谢模型5,10。HAc 醋酸(COD) Glycogen 糖原 Poly-P 多聚磷酸盐 ATP 三磷酸腺甙 PHB 聚-羟基-丁酸酯 NADH2 烟酰胺腺嘌呤二核苷酸(辅酶)一般认为,污水中的基质(COD)首先在厌氧条件下被转化为细菌细胞内的聚合物质PHA( 即PHB PHV,以PHB为主要成分),这个过程籍细胞内多聚磷酸盐来提供所需能量。结果,磷酸盐被释放到细胞之外。当环境改变为好氧条件后,由于环境中缺乏COD而使得在厌氧条件下贮存的PHB被用来充当基质。籍基质所提供的能量,细菌在此条件下过量摄取
10、环境中的磷酸盐而在细胞内形成多聚磷酸盐,细菌同时得到增殖。此外,在好氧条件下糖源也得到补充。在好氧条件后分离增殖的细菌,磷便能随细菌细胞而被排除。聚磷细菌PAOs(Phosphate Accum ulating Organisms)细胞内的磷含量可高达12%(以细胞干重计),而普通细菌细胞的磷含量仅为1%3%10。可见,生物聚磷后的细菌分离可有效将污水中的磷酸盐脱除。兼性反硝化细菌生物摄/放磷作用被确认不仅拓宽了磷的去除途径,而且,更重要的是这种细菌的生物摄/放磷作用将反硝化脱氮与生物除磷有机地合二为一。这就为可持续污水处理工艺的发展奠定了十分有力的技术基础。如图2所示,在缺氧(无氧但存在硝酸
11、氮)条件下,反硝化除磷细菌DPB(Denitrifying Phosphorusremoving Bacteria)能够象在好氧条件下一样,利用硝酸氮充当电子受体,产生同样的生物摄磷作用。在生物摄磷的同时,硝酸氮被还原为氮气。显然,被DPB合并后的反硝化除磷过程能够节省相当的COD与曝气量,同时也意味着较少的细胞合成量。2.2 反硝化除磷工艺事实上,在早先应用的UCT(University of Cape Town)等生物脱氮除磷工艺中存在着一定数量的DPB,只不过当时没有被人们认识而已。在实际工程中,为最大程度地从工艺角度创造DPB的富集条件,一种变型的UCT工艺BCFS在荷兰应运而生1112。实际上,BCFS工艺以荷兰早年研发的氧化沟(污泥龄同氧化沟)和南非发明的UCT工艺原理为基础,将UCT反应池扩展为5个,具有3个内循环和1个被结合的化学除磷单元。以上是建筑网为你收集整理的关于“可持续生物除磷脱氮污水处理技术”等建筑相关的知识,更多内容可以登入中国建筑网建设通进行查询。
限制150内