06至10年浙江省高等数学(竞赛--工科类试题)(共26页).doc
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_05.gif)
《06至10年浙江省高等数学(竞赛--工科类试题)(共26页).doc》由会员分享,可在线阅读,更多相关《06至10年浙江省高等数学(竞赛--工科类试题)(共26页).doc(26页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、精选优质文档-倾情为你奉上 2006浙江省高等数学(微积分)竞赛试题一、 计算题(每小题12分,满分60分)1、计算.解: 。2、求.解: .3、求.解: .4、求过且与曲面的所有切平面皆垂直的平面方程.解:令则,令所求平面方程为: ,在曲面上取一点,则切平面的法向量为,则在曲面上取一点,则切平面的法向量为,则.解得: 即所求平面方程为: .二、(15分)设,问有几个实根?并说明理由.解: 当, 当, 且的增长速度要比来得快!所以无实根.三、(满分20分)求中的系数.解: 当时, 故中的系数为.四、(20分) 计算,其中是球面与平面的交线.解: 而,故.五、(20分)设为非负实数,试证:的充分
2、必要条件为.证明:必要性 由于,则, .充分性;要证明,只需证明: ,这里,若,不等式显然成立;即只需证明: ,而,故只要说明: ,即,当时,显然成立;假设当时,也成立,即;当时, . 六、(15分)求最小的实数,使得满足的连续函数都有.解: , 取,显然,而, 取,显然,而, 故最小的实数.2007浙江省高等数学(微积分)竞赛试题(解答) 一.计算题(每小题12分,满分60分)1、求.解: 。2、求.解: .3、求的值,使.解: 被积函数是奇函数, 要积分为零, 当且仅当积分区间对称,即: , 解得: .4、计算.解: , 其中如右图.5、计算,其中为圆柱面.解: 被积函数关于是奇函数,积分
3、区域关于对称,二、(20分)设,求: (1);(2) .解: (1), ;(2) (图来说明积分上下).三、(满分20分)有一张边长为的正方形纸(如图),、分别为、的中点,为的中点,现将纸卷成圆柱形,使与重合,与重合,并将圆柱垂直放在平面上,且与原点重合,若在轴正向上,求:(1) 通过,两点的直线绕轴旋转所得的旋转曲面方程;(2) 此旋转曲面、平面和过点垂直于轴的平面所围成的立体体积. 解:旋转曲面上任意取一点则的坐标为: , 化简得:所求的旋转曲面方程为:,(2),故过垂直轴的平面方程为:令,解得在坐标面上的曲线方程为:,图中所求的旋转体的体积为: .四、(20分) 求函数,在的最大值、最小
4、值.解: 由于具有轮换对称性,令, 或解得驻点: 或对, ,在圆周上,由条件极值得:令解得: ,;在圆周上,由条件极值得:令解得: , ,;,在的最大值为,最小值为.五、(15分)设幂级数的系数满足,求此幂级数的和函数.证明: 而,即: 一阶非齐次线性微分方程-常数变易法, 求的通解: ,令代入得:,即: 故的通解为: ,由于,解得, 故的和函数. 六、(15分)已知二阶可导,且,(1) 证明:.(2) 若,证明.证明: (1) 要证明,只需证明,也即说明是凹函数, ,故是凹函数, 即证.(2) ,即: .2008浙江省高等数学(微积分)竞赛试题(解答) 一.计算题1、求.解: 。2、计算.解
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 06 10 浙江省 高等数学 竞赛 工科 试题 26
![提示](https://www.taowenge.com/images/bang_tan.gif)
限制150内