《锐角三角函数》学案2.docx
《《锐角三角函数》学案2.docx》由会员分享,可在线阅读,更多相关《《锐角三角函数》学案2.docx(6页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、锐角三角函数学案2锐角三角函数学案1 锐角三角函数学案1 教学目标:1.探究直角三角形中锐角三角函数值与三边之间的关系。2.驾驭三角函数定义式:sinA=,cosA=,tanA=。重点和难点重点:三角函数定义的理解。难点:直角三角形中锐角三角函数值与三边之间的关系及求三角函数值。【教学过程】一、情境导入如图是两个自动扶梯,甲、乙两人分别从1、2号自动扶梯上楼,谁先到达楼顶?假如AB和AB相等而和大小不同,那么它们的高度AC和AC相等吗?AB、AC、BC与,AB、AC、BC与之间有什么关系呢?-导出新课二、新课教学1、合作探究见课本2、三角函数的定义在RtABC中,假如锐角A确定,那么A的对边与
2、斜边的比、邻边与斜边的比也随之确定.A的对边与邻边的比叫做A的正弦(sine),记作sinA,即sinAA的邻边与斜边的比叫做A的余弦(cosine),记作cosA,即cosA=A的对边与A的邻边的比叫做A的正切(tangent),记作tanA,即锐角A的正弦、余弦和正切统称A的三角函数.留意:sinA,cosA,tanA都是一个完整的符号,单独的“sin”没有意义,其中A前面的“”一般省略不写。师:依据上面的三角函数定义,你知道正弦与余弦三角函数值的取值范围吗?师:(点拨)直角三角形中,斜边大于直角边生:独立思索,尝试回答,沟通结果明确:0sina1,0cosa1.巩固练习:课内练习T1、作
3、业题T1、23、如图,在RtABC中,C=90,AB=5,BC=3,求A,B的正弦,余弦和正切.分析:由勾股定理求出AC的长度,再依据直角三角形中锐角三角函数值与三边之间的关系求出各函数值。师:视察以上计算结果,你发觉了什么?明确:sinA=cosB,cosA=sinB,tanAtanB=14、课堂练习:课本课内练习T2、3,作业题T3、4、5、6三、课堂小结:谈谈今日的收获1、内容总结(1)在RtABC中,设C=900,为RtABC的一个锐角,则的正弦,的余弦,的正切(2)一般地,在RtABC中,当C=90时,sinA=cosB,cosA=sinB,tanAtanB=12、方法归纳在涉及直角
4、三角形边角关系时,常借助三角函数定义来解四、布置作业:1.课后作业题2.见作业本相关节次 锐角三角函数的应用 31.3锐角三角函数的应用教学目标1.能够把数学问题转化成数学问题。2.能够错助于计算器进行有三角函数的计算,并能对结果的意义进行说明,发展数学的应用意识和解决问题的实力。过程与方法经验探究实际问题的过程,进一步体会三角函数在解决实际问题过程中的应用。情感看法与价值观主动参加探究活动,并在探究过程中发表自己的见解,体会三角函数是解决实际问题的有效工具。重点:能够把数学问题转化成数学问题,能够借助于计算器进行有三角函数的计算。难点:能够把数学问题转化成解直角三角形问题,会正确选用适合的直
5、角三角形的边角关系。教学过程一、问题引入,了解仰角俯角的概念。提出问题:某飞机在空中A处的高度AC1500米,此时从飞机看地面目标B的俯角为18,求A、B间的距离。提问:1.俯角是什么样的角?,假如这时从地面B点看飞机呢,称ABC是什么角呢?这两个角有什么关系?2.这个ABC是什么三角形?图中的边角在实际问题中的意义是什么,求的是什么,在这个几何图形中已知什么,又是求哪条线段的长,选用什么方法?老师通过问题的分析与探讨与学生共同学习也仰角与俯角的概念,也为运用新学问解决实际问题供应了肯定的模式。二、测量物体的高度或宽度问题.1.提出老问题,找寻新方法我们学习中介绍过测量物高的一些方法,现在我们
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 锐角三角函数 锐角三角 函数
限制150内