2017全国一卷理科数学高考真题及答案0.pdf
《2017全国一卷理科数学高考真题及答案0.pdf》由会员分享,可在线阅读,更多相关《2017全国一卷理科数学高考真题及答案0.pdf(10页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、欢迎您阅读并下载本文档,本文档来源于互联网整理,如有侵权请联系删除!我们将竭诚为您提供优质的文档!2017 年普通高等学校招生全国统一考试 理科数学 一、选择题:本题共 12 小题,每小题 5 分,共 60 分。在每小题给出的四个选项中,只有一项是符合题目要求的。1已知集合A=x|x1000 的最小偶数n,那么在和两个空白框中,可以分别填入 AA1 000 和n=n+1 BA1 000 和n=n+2 CA1 000 和n=n+1 DA1 000 和n=n+2 9已知曲线C1:y=cos x,C2:y=sin(2x+23),则下面结论正确的是 A把C1上各点的横坐标伸长到原来的 2 倍,纵坐标不
2、变,再把得到的曲线向右平移6个单位长度,得到曲线C2 欢迎您阅读并下载本文档,本文档来源于互联网整理,如有侵权请联系删除!我们将竭诚为您提供优质的文档!B把C1上各点的横坐标伸长到原来的2倍,纵坐标不变,再把得到的曲线向左平移12个单位长度,得到曲线C2 C把C1上各点的横坐标缩短到原来的12倍,纵坐标不变,再把得到的曲线向右平移6个单位长度,得到曲线C2 D把C1上各点的横坐标缩短到原来的12倍,纵坐标不变,再把得到的曲线向左平移12个单位长度,得到曲线C2 10已知F为抛物线C:y2=4x的焦点,过F作两条互相垂直的直线l1,l2,直线l1与C交于A、B两点,直线l2与C交于D、E两点,则
3、|AB|+|DE|的最小值为 A16 B14 C12 D10 11设xyz为正数,且235xyz,则 A2x3y5z B5z2x3y C3y5z2x D3y2x100且该数列的前N项和为2的整数幂。那么该款软件的激活码是 A440 B330 C220 D110 二、填空题:本题共 4 小题,每小题 5 分,共 20 分。13已知向量a,b的夹角为 60,|a|=2,|b|=1,则|a+2 b|=.14设x,y满足约束条件21210 xyxyxy,则32zxy的最小值为.15已知双曲线C:22221xyab(a0,b0)的右顶点为A,以A为圆心,b为半径做圆A,圆A与双曲线C的一条渐近线交于M、
4、N两点。若MAN=60,则C的离心率为_。16如图,圆形纸片的圆心为O,半径为 5 cm,该纸片上的等边三角形ABC的中心为O。D、E、F为圆O上的点,DBC,ECA,FAB分别是以BC,CA,AB为底边的等腰三角形。沿虚线剪开后,分别以BC,CA,AB为折痕折起DBC,ECA,FAB,使得D、E、F重合,得到三棱锥。当ABC的边长变化时,所得三棱锥体积(单位:cm3)的最大值为_。三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。第1721题为必考题,每个试题考生都必须作答。第 22、23 题为选考题,考生根据要求作答。(一)必考题:共 60 分。17(12 分)ABC的内角A,
5、B,C的对边分别为a,b,c,已知ABC的面积为23sinaA 欢迎您阅读并下载本文档,本文档来源于互联网整理,如有侵权请联系删除!我们将竭诚为您提供优质的文档!(1)求 sinBsinC;(2)若 6cosBcosC=1,a=3,求ABC的周长.18.(12 分)如图,在四棱锥P-ABCD中,AB90BAPCDP(1)证明:平面PAB平面PAD;(2)若PA=PD=AB=DC,90APD,求二面角A-PB-C的余弦值.19(12 分)为了监控某种零件的一条生产线的生产过程,检验员每天从该生产线上随机抽取 16 个零件,并测量其尺寸(单位:cm)根据长期生产经验,可以认为这条生产线正常状态下生
6、产的零件的尺寸服从正态分布2(,)N (1)假设生产状态正常,记X表示一天内抽取的 16 个零件中其尺寸在(3,3)之外的零件数,求(1)P X 及X的数学期望;(2)一天内抽检零件中,如果出现了尺寸在(3,3)之外的零件,就认为这条生产线在这一天的生产过程可能出现了异常情况,需对当天的生产过程进行检查()试说明上述监控生产过程方法的合理性;()下面是检验员在一天内抽取的 16 个零件的尺寸:经计算得16119.9716iixx,161622221111()(16)0.2121616iiiisxxxx,其中ix为抽取的第i个零件的尺寸,1,2,16i 用样本平均数x作为的估计值,用样本标准差s
7、作为的估计值,利用估计值判断是否需对当天的生产过程进行检查剔除(3,3)之外的数据,用剩下的数据估计和(精确到)附:若随机变量Z服从正态分布2(,)N,则(33)0.997 4PZ,160.997 40.959 2,0.0080.09 20.(12 分)已知椭圆C:2222=1xyab(ab0),四点P1(1,1),P2(0,1),P3(1,32),P4(1,32)中恰有三点在椭圆C上.(1)求C的方程;(2)设直线l不经过P2点且与C相交于A,B两点。若直线P2A与直线P2B的斜率的和为1,证明:l过定点.21.(12 分)已知函数)f x(ae2x+(a2)exx.(1)讨论()f x的单
8、调性;欢迎您阅读并下载本文档,本文档来源于互联网整理,如有侵权请联系删除!我们将竭诚为您提供优质的文档!(2)若()f x有两个零点,求a的取值范围.(二)选考题:共 10 分。请考生在第 22、23 题中任选一题作答。如果多做,则按所做的第一题计分。22选修 44:坐标系与参数方程(10 分)在直角坐标系xOy中,曲线C的参数方程为3cos,sin,xy(为参数),直线l的参数方程为 4,1,xattyt(为参数).(1)若a=1,求C与l的交点坐标;(2)若C上的点到l的距离的最大值为17,求a.23选修 45:不等式选讲(10 分)已知函数f(x)=x2+ax+4,g(x)=x+1+x1
9、.(1)当a=1 时,求不等式f(x)g(x)的解集;(2)若不等式f(x)g(x)的解集包含1,1,求a的取值范围.欢迎您阅读并下载本文档,本文档来源于互联网整理,如有侵权请联系删除!我们将竭诚为您提供优质的文档!2017 年普通高等学校招生全国统一考试 理科数学参考答案 一、选择题:本题共 12 小题,每小题 5 分,共 60 分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.A 2B 3B 4C 5D 6C 7B 8D 9D 10A 11D 12A 二、填空题:本题共 4 小题,每小题 5 分,共 20 分。132 3 14-5 152 33 16315cm 三、解答题:共70
10、分。解答应写出文字说明、证明过程或演算步骤。第1721题为必考题,每个试题考生都必须作答。第 22、23 题为选考题,考生根据要求作答。(一)必考题:共 60 分。17(12 分)ABC的内角A,B,C的对边分别为a,b,c,已知ABC的面积为23sinaA(1)求 sinBsinC;(2)若 6cosBcosC=1,a=3,求ABC的周长.解:(1)由题意可得21sin23sinABCaSbcAA,化简可得2223sinabcA,根据正弦定理化简可得:2222sin3sinsinCsinsinsinC3ABAB。(2)由2sinsinC123coscossinsinCcoscos123cos
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 2017 全国 一卷 理科 数学 高考 答案
限制150内