弧长、扇形的面积和圆锥侧面积中考复习.docx
《弧长、扇形的面积和圆锥侧面积中考复习.docx》由会员分享,可在线阅读,更多相关《弧长、扇形的面积和圆锥侧面积中考复习.docx(15页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、弧长、扇形的面积和圆锥侧面积中考复习弧长和扇形的面积 弧长及扇形的面积 教学目标 (一)教学学问点 1经验探究弧长计算公式及扇形面积计算公式的过程; 2了解弧长计算公式及扇形面积计算公式,并会应用公式解决问题 (二)实力训练要求 1经验探究弧长计算公式及扇形面积计算公式的过程,培育学生的探究实力 2了解弧长及扇形面积公式后,能用公式解决问题,训练学生的数学运用实力 (三)情感与价值观要求 1经验探究弧长及扇形面积计算公式,让学生体验教学活动充溢着探究与创建,感受数学的严谨性以及数学结论的确定性 2通过用弧长及扇形面积公式解决实际问题,让学生体验数学与人类生活的亲密联系,激发学生学习数学的爱好,
2、提高他们的学习主动性,同时提高大家的运用实力 教学重点 1经验探究弧长及扇形面积计算公式的过程 2了解弧长及扇形面积计算公式 3会用公式解决问题 教学难点 1探究弧长及扇形面积计算公式 2用公式解决实际问题 教学方法 学生相互沟通探究法 教具打算 2投影片四张 第一张:(记作37A) 其次张:(记作37B) 第三张:(记作37C) 第四张:(记作37D) 教学过程 创设问题情境,引入新课 师在小学我们已经学习过有关圆的周长和面积公式,弧是圆周的一部分,扇形是圆的一部分,那么弧长与扇形面积应怎样计算?它们与圆的周长、圆的面积之间有怎样的关系呢?本节课我们将进行探究 新课讲解 一、复习 1圆的周长
3、如何计算? 2圆的面积如何计算? 3圆的圆心角是多少度? 生若圆的半径为r,则周长l2r,面积Sr2,圆的圆心角是360 二、探究弧长的计算公式 投影片(37A) 如图,某传送带的一个转动轮的半径为10cm (1)转动轮转一周,传送带上的物品A被传送多少厘米? (2)转动轮转1,传送带上的物品A被传送多少厘米? (3)转动轮转n,传送带上的物品A被传送多少厘米? 师分析:转动轮转一周,传送带上的物品应被传送一个圆的周长;因为圆的周长对应360的圆心角,所以转动轮转1,传送带上的物品A被传送圆周长的;转动轮转n,传送带上的物品A被传送转1时传送距离的n倍 生解:(1)转动轮转一周,传送带上的物品
4、A被传送21020cm; (2)转动轮转1,传送带上的物品A被传送cm; (3)转动轮转n,传送带上的物品A被传送ncm 师依据上面的计算,你能猜想出在半径为R的圆中,n的圆心角所对的弧长的计算公式吗?请大家相互沟通 生依据刚才的探讨可知,360的圆心角对应圆周长2R,那么1的圆心角对应的弧长为,n的圆心角对应的弧长应为1的圆心角对应的弧长的n倍,即n 师表述得特别棒 在半径为R的圆中,n的圆心角所对的弧长(arclength)的计算公式为: l 下面我们看弧长公式的运用 三、例题讲解 投影片(37B) 制作弯形管道时,须要先按中心线计算“展直长度”再下料,试计算下图中管道的展直长度,即的长(
5、结果精确到0.1mm) 分析:要求管道的展直长度,即求的长,根根弧长公式l可求得的长,其中n为圆心角,R为半径 解:R40mm,n110 的长R4076.8mm 因此,管道的展直长度约为76.8mm 四、想一想 投影片(37C) 在一块空旷的草地上有一根柱子,柱子上拴着一条长3m的绳子,绳子的另一端拴着一只狗 (1)这只狗的最大活动区域有多大? (2)假如这只狗只能绕柱子转过n角,那么它的最大活动区域有多大? 师请大家相互沟通 生(1)如图(1),这只狗的最大活动区域是圆的面积,即9; (2)如图(2),狗的活动区域是扇形,扇形是圆的一部分,360的圆心角对应的圆面积,1的圆心角对应圆面积的,
6、即9,n的圆心角对应的圆面积为n 师请大家依据刚才的例题归纳总结扇形的面积公式 生假如圆的半径为R,则圆的面积为R2,1的圆心角对应的扇形面积为,n的圆心角对应的扇形面积为n因此扇形面积的计算公式为S扇形R2,其中R为扇形的半径,n为圆心角 五、弧长与扇形面积的关系 师我们探讨了弧长和扇形面积的公式,在半径为R的圆中,n的圆心角所对的弧长的计算公式为lR,n的圆心角的扇形面积公式为S扇形R2,在这两个公式中,弧长和扇形面积都和圆心角n半径R有关系,因此l和S之间也有肯定的关系,你能猜得出吗?请大家相互沟通 生lR,S扇形R2, R2RRS扇形lR 六、扇形面积的应用 投影片(37D) 扇形AO
7、B的半径为12cm,AOB120,求的长(结果精确到0.1cm)和扇形AOB的面积(结果精确到0.1cm2) 分析:要求弧长和扇形面积,依据公式须要知道半径R和圆心角n即可,本题中这些条件已经告知了,因此这个问题就解决了 解:的长1225.1cm S扇形122150.7cm2 因此,的长约为25.1cm,扇形AOB的面积约为150.7cm2 课堂练习 随堂练习 课时小结 本节课学习了如下内容: 1探究弧长的计算公式lR,并运用公式进行计算; 2探究扇形的面积公式SR2,并运用公式进行计算; 3探究弧长l及扇形的面积S之间的关系,并能已知一方求另一方 课后作业 习题310 活动与探究 如图,两个
8、同心圆被两条半径截得的的长为6cm,的长为10cm,又AC12cm,求阴影部分ABDC的面积 分析:要求阴影部分的面积,需求扇形COD的面积与扇形AOB的面积之差依据扇形面积SlR,l已知,则须要求两个半径OC与OA,因为OCOAAC,AC已知,所以只要能求出OA即可 解:设OAR,OCR12,On,依据已知条件有: 得 3(R12)5R,R18 OC181230 SS扇形CODS扇形AOB103061896cm2 所以阴影部分的面积为96cm2 板书设计 37弧长及扇形的面积 一、1复习圆的周长和面积计算公式; 2探究弧长的计算公式; 3例题讲解; 4想一想; 5弧长及扇形面积的关系; 6扇
9、形面积的应用 二、课堂练习 三、课时小结 四、课后作业 弧长及扇形的面积27.4弧长及扇形的面积教学目标(一)教学学问点1经验探究弧长计算公式及扇形面积计算公式的过程;2了解弧长计算公式及扇形面积计算公式,并会应用公式解决问题(二)实力训练要求1经验探究弧长计算公式及扇形面积计算公式的过程,培育学生的探究实力2了解弧长及扇形面积公式后,能用公式解决问题,训练学生的数学运用实力(三)情感与价值观要求1经验探究弧长及扇形面积计算公式,让学生体验教学活动充溢着探究与创建,感受数学的严谨性以及数学结论的确定性2通过用弧长及扇形面积公式解决实际问题,让学生体验数学与人类生活的亲密联系,激发学生学习数学的
10、爱好,提高他们的学习主动性,同时提高大家的运用实力教学重点1经验探究弧长及扇形面积计算公式的过程2了解弧长及扇形面积计算公式3会用公式解决问题教学难点1探究弧长及扇形面积计算公式2用公式解决实际问题教学方法学生相互沟通探究法教具打算2投影片四张第一张:(记作A)其次张:(记作B)第三张:(记作C)第四张:(记作D)教学过程创设问题情境,引入新课师在小学我们已经学习过有关圆的周长和面积公式,弧是圆周的一部分,扇形是圆的一部分,那么弧长与扇形面积应怎样计算?它们与圆的周长、圆的面积之间有怎样的关系呢?本节课我们将进行探究新课讲解一、复习1圆的周长如何计算?2圆的面积如何计算?3圆的圆心角是多少度?
11、生若圆的半径为r,则周长l2r,面积Sr2,圆的圆心角是360二、探究弧长的计算公式投影片(A)如图,某传送带的一个转动轮的半径为10cm(1)转动轮转一周,传送带上的物品A被传送多少厘米?(2)转动轮转1,传送带上的物品A被传送多少厘米?(3)转动轮转n,传送带上的物品A被传送多少厘米?师分析:转动轮转一周,传送带上的物品应被传送一个圆的周长;因为圆的周长对应360的圆心角,所以转动轮转1,传送带上的物品A被传送圆周长的;转动轮转n,传送带上的物品A被传送转1时传送距离的n倍生解:(1)转动轮转一周,传送带上的物品A被传送21020cm;(2)转动轮转1,传送带上的物品A被传送cm;(3)转
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 扇形 面积 圆锥 侧面 中考 复习
限制150内