勾股定理解析折叠问题.ppt
《勾股定理解析折叠问题.ppt》由会员分享,可在线阅读,更多相关《勾股定理解析折叠问题.ppt(17页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、利用勾股定理利用勾股定理解决折叠问题解决折叠问题解题步骤解题步骤 1 1、标已知,标问题,明确目标在哪个直角、标已知,标问题,明确目标在哪个直角三角形中,设适当的未知数三角形中,设适当的未知数x x;2 2、利用折叠,找全等。、利用折叠,找全等。3 3、将已知边和未知边(用含、将已知边和未知边(用含x x的代数式表示)的代数式表示)转化到同一直角三角形中表示出来。转化到同一直角三角形中表示出来。4 4、利用勾股定理,列出方程,解方程,得解。、利用勾股定理,列出方程,解方程,得解。三角形中的折叠三角形中的折叠 例例1 1:一张直角三角形的纸片,如图一张直角三角形的纸片,如图1 1所示折叠,使两个
2、锐角的顶点所示折叠,使两个锐角的顶点A A、B B重合。若重合。若B=30B=30,AC=AC=,求,求DCDC的长。的长。图1长方形中的折叠长方形中的折叠 例例2 2:如图如图2 2所示,将长方形纸片所示,将长方形纸片ABCDABCD的一边的一边ADAD向向下折叠,点下折叠,点D D落在落在BCBC边的边的F F处。已知处。已知AB=CD=8cmAB=CD=8cm,BC=AD=10cmBC=AD=10cm,求,求ECEC的长。的长。图2解:根据折叠可知,解:根据折叠可知,AFEADE,AF=AD=10cm,EF=ED,AB=8cm,EFEC=DC=8cm,在在Rt ABF中中FC=BC-BF
3、=4cm设设EC=xcm,则则EF=DCEC=(8x)cm在在Rt EFC中,根据勾股定理得中,根据勾股定理得EC=FC=EF即即x4=(8x),x=3cm,EC的长为的长为3cm。发挥你的想象力发挥你的想象力v长方形还可以怎样折叠,要求折叠长方形还可以怎样折叠,要求折叠一次,给出两个已知条件,提出问题,一次,给出两个已知条件,提出问题,并解答问题。并解答问题。课堂小结课堂小结v1、标已知;v2、找相等;v3、设未知,利用勾股定理,列方程;v4、解方程,得解。用一张直角三角形形状的纸片用一张直角三角形形状的纸片,你能折叠你能折叠成面积减半的矩形吗成面积减半的矩形吗?说明理由。说明理由。动手折一
4、折动手折一折 若用一张任意三角形形状的纸片若用一张任意三角形形状的纸片,你还能你还能折叠成面积减半的矩形吗折叠成面积减半的矩形吗?折叠过程就是轴对称变折叠过程就是轴对称变换换,折痕就是对称轴,折折痕就是对称轴,折痕两边的图形全等。痕两边的图形全等。如图,如图,a是长方形纸带,将纸带沿是长方形纸带,将纸带沿EF折叠成折叠成图图b,如果如果GEF=20,那么,那么AEG=EADCBF图图aCBDEFGA图图bD D C C CD图图cCDBGAF FE?2020相信你相信你,一定行一定行如果再沿如果再沿BFBF折叠成图折叠成图c c,则图,则图c c中的中的CFECFE的度的度数是数是 14012
5、0折叠问题中折叠问题中,求角度求角度时,往往可通过动手时,往往可通过动手折叠,或将图形还原。折叠,或将图形还原。如图如图,矩形纸片矩形纸片ABCDABCD中,中,AB=6cm,AD=8cm,CADCBE求重叠部分求重叠部分BEDBED的面积。的面积。探究活动探究活动探究一:探究一:把矩形沿对角线把矩形沿对角线BDBD折叠,点折叠,点C C落在落在CC处。猜想重叠部分处。猜想重叠部分BEDBED是什么是什么三角形?说明你的理由三角形?说明你的理由.角平分线与平行线组合时角平分线与平行线组合时,能得到等腰三角形能得到等腰三角形在矩形的折叠问题中,求线段长时,常设未知数,找到在矩形的折叠问题中,求线
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 勾股定理 解析 折叠 问题
限制150内