同济大学高等数学第六版上第一章第五节 极限运算法则.ppt
《同济大学高等数学第六版上第一章第五节 极限运算法则.ppt》由会员分享,可在线阅读,更多相关《同济大学高等数学第六版上第一章第五节 极限运算法则.ppt(32页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、极限运算法则极限运算法则 本节讨论极限的求法。利用极限的定义,从变本节讨论极限的求法。利用极限的定义,从变量的变化趋势来观察函数的极限,对于比较复杂量的变化趋势来观察函数的极限,对于比较复杂的函数难于实现。为此需要介绍极限的运算法则。的函数难于实现。为此需要介绍极限的运算法则。首先来介绍无穷小。首先来介绍无穷小。一、无穷小一、无穷小 在实际应用中,经常会遇到极限为在实际应用中,经常会遇到极限为0的变量。的变量。对于这种变量不仅具有实际意义,而且更具有对于这种变量不仅具有实际意义,而且更具有理论价值,值得我们单独给出定义理论价值,值得我们单独给出定义1.定义定义:极限为零的变量称为极限为零的变量
2、称为无穷小无穷小.例如例如,注意注意1.称函数为无穷小,必须指明自变量的称函数为无穷小,必须指明自变量的变化过程;变化过程;2.无穷小是变量无穷小是变量,不能与很小的数混淆不能与很小的数混淆;3.零是可以作为无穷小的唯一的数零是可以作为无穷小的唯一的数.2.无穷小与函数极限的关系无穷小与函数极限的关系:证证 必要性必要性充分性充分性意义意义1.将一般极限问题转化为特殊极限问题将一般极限问题转化为特殊极限问题(无无穷小穷小);3.无穷小的运算性质无穷小的运算性质:定理定理2 在同一过程中在同一过程中,有限个无穷小的代数和有限个无穷小的代数和仍是无穷小仍是无穷小.证证注意注意无穷多个无穷小的代数和
3、未必是无穷小无穷多个无穷小的代数和未必是无穷小.定理定理3 有界函数与无穷小的乘积是无穷小有界函数与无穷小的乘积是无穷小.证证推论推论1 在同一过程中在同一过程中,有极限的变量与无穷小的乘有极限的变量与无穷小的乘积是无穷小积是无穷小.推论推论2 常数与无穷小的乘积是无穷小常数与无穷小的乘积是无穷小.推论推论3 有限个无穷小的乘积也是无穷小有限个无穷小的乘积也是无穷小.都是无穷小都是无穷小二、无穷大二、无穷大绝对值无限增大的变量称为绝对值无限增大的变量称为无穷大无穷大.特殊情形:正无穷大,负无穷大特殊情形:正无穷大,负无穷大注意注意1.无穷大是变量无穷大是变量,不能与很大的数混淆不能与很大的数混
4、淆;3.无穷大是一种特殊的无界变量无穷大是一种特殊的无界变量,但是无但是无界变量未必是无穷大界变量未必是无穷大.无界,无界,不是无穷大不是无穷大证证三、无穷小与无穷大的关系三、无穷小与无穷大的关系定理定理4 4 在同一过程中在同一过程中,无穷大的倒数为无穷小无穷大的倒数为无穷小;恒不为零的无穷小的倒数为无穷大恒不为零的无穷小的倒数为无穷大.证证意义意义 关于无穷大的讨论关于无穷大的讨论,都可归结为关于无穷都可归结为关于无穷小的讨论小的讨论.四、极限运算法则四、极限运算法则定理定理证证由无穷小运算法则由无穷小运算法则,得得有界,有界,注注此定理对于数列同样成立此定理对于数列同样成立此定理证明的基
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 同济大学高等数学第六版上第一章第五节 极限运算法则 同济大学 高等数学 第六 第一章 五节 极限 运算 法则
限制150内