第11章排列与组合.doc
《第11章排列与组合.doc》由会员分享,可在线阅读,更多相关《第11章排列与组合.doc(8页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、学案61排列与组合导学目标: 1.理解排列、组合的概念.2.能利用计数原理推导排列数公式、组合数公式.3.能解决简单的实际问题自主梳理1排列的定义:_.排列数的定义:_,叫做从n个不同元素中取出m个元素的排列数,用符号A表示说明:n!_,叫做n的阶乘;规定0!_;当mn时的排列叫做全排列,全排列数A_.2排列数公式的两种形式:(1)An(n1)(nm1),(2)A,其中公式(1)(不带阶乘的)主要用于计算;公式(2)(阶乘形式)适用于化简、证明、解方程3组合的定义:从n个不同元素中取出m(mn)个元素并成一组,叫做_从n个不同元素中取出m(mn)个元素的所有组合的个数叫做从n个不同元素中取出m
2、个元素的_,用_表示4组合数公式的两种形式:(1)C;(2)C,其中公式(1)主要用于计算,尤其适用于上标是具体数且m的情况,公式(2)适用于化简、证明、解方程等5CC_,m、kN,nN*.6组合数的两个性质:(1)C_,(2)C_.自我检测1(2010北京改编)8名学生和2位老师站成一排合影,2位老师不相邻的排法种数为_(用式子表示)2(2010广州期末七区联考)2010年上海世博会某国展出5件艺术作品,其中不同书法作品2件、不同绘画作品2件、标志性建筑设计1件,在展台上将这5件作品排成一排,要求2件书法作品必须相邻,2件绘画作品不能相邻,则该国展出这5件作品的不同方案有_种32008年9月
3、25日晚上4点30分,“神舟七号”载人飞船发射升空,某校全体师生集体观看了电视实况转播,观看后组织全体学生进行关于“神舟七号”的论文评选,若三年级文科共4个班,每班评出2名优秀论文(其中男女生各1名)依次排成一列进行展览,若规定男女生所写论文分别放在一起,则不同的展览顺序有_种4(2010全国改编)将标号为1,2,3,4,5,6的6张卡片放入3个不同的信封中,若每个信封放2张,其中标号为1,2的卡片放入同一信封,则不同的方法共有_种5(2010重庆改编)某单位拟安排6位员工在6月14日至16日(端午节假期)值班,每天安排2人,每人值班1天若6位员工中的甲不值14日,乙不值16日,则不同的安排方
4、法共有_种.探究点一含排列数、组合数的方程或不等式例1(1)求等式3中的n值;(2)求不等式6A.探究点二排列应用题例2六人按下列要求站一排,分别有多少种不同的站法?(1)甲不站两端;(2)甲、乙必须相邻;(3)甲、乙不相邻; (4)甲、乙之间恰间隔两人;(5)甲、乙站在两端; (6)甲不站左端,乙不站右端变式迁移2用1,2,3,4,5,6组成六位数(没有重复数字),要求任何相邻两个数字的奇偶性不同,且1和2相邻,求这样的六位数的种数探究点三组合应用题例3男运动员6名,女运动员4名,其中男女队长各1名,选派5人外出比赛,在下列情形中各有多少种选派方法?(1)男运动员3名,女运动员2名;(2)至
5、少有1名女运动员;(3)队长中至少有1人参加;(4)既要有队长,又要有女运动员变式迁移312名同学合影,站成前排4人后排8人,现摄影师从后排8人中抽2人调整到前排,若其他人的相对顺序不变,则不同调整方法总数是_1解排列、组合应用题应遵循两个原则:一是按元素的性质进行分类;二是按事件发生的过程进行分步2对于有附加条件的排列、组合应用题,通常从三个途径考虑:(1)以元素为主考虑,即先满足特殊元素的要求,再考虑其他元素;(2)以位置为主考虑,即先满足特殊位置的要求,再考虑其他位置;(3)先不考虑附加条件,计算出排列数或组合数,再减去不合要求的排列数或组合数3关于排列、组合问题的求解,应掌握以下基本方
6、法与技巧:(1)特殊元素优先安排;(2)合理分类与准确分步;(3)排列组合综合问题先选后排;(4)相邻问题捆绑处理;(5)不相邻问题插空处理;(6)定序问题排除法处理;(7)分排问题直排处理;(8)“小集团”排列问题先整体后局部;(9)构造模型;(10)正难则反,等价转化(满分:90分)一、填空题(每小题6分,共48分)1在数字7,8,9与符号“”,“”五个元素的所有全排列中,任意两个数字不相邻的全排列个数是_2(2009湖南改编)从10名大学毕业生中选3人担任村长助理,则甲、乙至少有1人入选,而丙没有入选的不同选法的种数为_3(2010全国改编)某校开设A类选修课3门,B类选修课4门,一位同
7、学从中共选3门若要求两类课程中各至少选一门,则不同的选法共有_种4(2010重庆改编)某单位安排7位员工在10月1日至7日值班,每天安排一人,每人值班1天若7位员工中的甲、乙排在相邻两天,丙不排在10月1日,丁不排在10月7日,则不同的安排方案共有_种56条网线并联,它们能通过的最大信息量分别为1,1,2,2,3,4,现从中任取三条网线且使这三条网线通过最大信息量的和大于等于6的方法共有_种6(2011北京)用数字2,3组成四位数,且数字2,3至少都出现一次,这样的四位数共有_个(用数字作答)78名世界网球顶级选手在上海大师赛上分成两组,每组各4人,分别进行单循环赛,每组决出前两名,再由每组的
8、第一名与另一组的第二名进行淘汰赛,获胜者角逐冠、亚军,败者角逐3、4名,则大师赛共有_场比赛8参加海地地震救援的中国救援队一小组共有8人,其中男同志5人,女同志3人现从这8人中选出3人参加灾后防疫工作,要求在选出的3人中男、女同志都有,则不同的选法共有_种(用数字作答)二、解答题(共42分)9(14分)(1)计算CC199200;(2)求CC的值;(3)求证:CCC.10(14分)有5个男生和3个女生,从中选出5人担任5门不同学科的课代表,求分别符合下列条件的选法数(1)有女生但人数必须少于男生;(2)某女生一定担任语文课代表;(3)某男生必须包括在内,但不担任语文课代表;(4)某女生一定要担
9、任语文课代表,某男生必须担任课代表,但不担任数学课代表11(14分)从1,3,5,7,9五个数字中选2个,0,2,4,6,8五个数字中选3个,能组成多少个无重复数字的五位数?学案61排列与组合答案自主梳理1从n个不同的元素中取出m (mn)个元素,按照一定的顺序排成一列,叫做从n个不同元素中取出m个元素的一个排列从n个不同元素中取出m (mn)个元素的所有排列的个数n(n1)211n!3.从n个不同元素中取出m个元素的一个组合组合数C5mk或mkn6.(1)C(2)CC自我检测1AA解析不相邻问题用插空法,先排学生有A种排法,老师插空有A种方法,所以共有AA种排法224解析2件书法作品看作一个
10、元素和标志性建筑设计进行排列有A种不同排法,让2件绘画作品插空有A种插法,2件书法作品之间的顺序也可交换,因此共有2AA24(种)31 152解析女生论文有A种展览顺序,男生论文也有A种展览顺序,男生与女生论文可以交换顺序,有A种方法,故总的展览顺序有AAA1 152(种)418解析先将1,2捆绑后放入信封中,有C种方法,再将剩余的4张卡片放入另外两个信封中,有CC种方法,所以共有CCC18(种)方法542解析若甲在16日值班,在除乙外的4人中任选1人在16日值班有C种选法,然后14日、15日有CC种安排方法,共有CCC24(种)安排方法;若甲在15日值班,乙在14日值班,余下的4人共有CCC
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 11 排列 组合
限制150内