2013年全国统一高考数学试卷(理科)(新课标ⅰ)(共26页).doc
《2013年全国统一高考数学试卷(理科)(新课标ⅰ)(共26页).doc》由会员分享,可在线阅读,更多相关《2013年全国统一高考数学试卷(理科)(新课标ⅰ)(共26页).doc(28页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、精选优质文档-倾情为你奉上2013年河北省高考数学试卷(理科)(全国新课标)一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一个是符合题目要求的.1(5分)已知集合A=x|x22x0,B=x|x,则()AAB=BAB=RCBADAB2(5分)若复数z满足(34i)z=|4+3i|,则z的虚部为()A4BC4D3(5分)为了解某地区中小学生的视力情况,拟从该地区的中小学生中抽取部分学生进行调查,事先已经了解到该地区小学、初中、高中三个学段学生的视力情况有较大差异,而男女生视力情况差异不大在下面的抽样方法中,最合理的抽样方法是()A简单的随机抽样B按性别分层抽样C按学段分层
2、抽样D系统抽样4(5分)已知双曲线C:(a0,b0)的离心率为,则C的渐近线方程为()Ay=By=Cy=xDy=5(5分)执行程序框图,如果输入的t1,3,则输出的s属于()A3,4B5,2C4,3D2,56(5分)如图,有一个水平放置的透明无盖的正方体容器,容器高8cm,将一个球放在容器口,再向容器注水,当球面恰好接触水面时测得水深为6cm,如不计容器的厚度,则球的体积为()ABCD7(5分)设等差数列an的前n项和为Sn,若Sm1=2,Sm=0,Sm+1=3,则m=()A3B4C5D68(5分)某几何体的三视图如图所示,则该几何体的体积为()A16+8B8+8C16+16D8+169(5分
3、)设m为正整数,(x+y)2m展开式的二项式系数的最大值为a,(x+y)2m+1展开式的二项式系数的最大值为b,若13a=7b,则m=()A5B6C7D810(5分)已知椭圆E:的右焦点为F(3,0),过点F的直线交椭圆E于A、B两点若AB的中点坐标为(1,1),则E的方程为()ABCD11(5分)已知函数f(x)=,若|f(x)|ax,则a的取值范围是()A(,0B(,1C2,1D2,012(5分)设AnBnCn的三边长分别为an,bn,cn,AnBnCn的面积为Sn,n=1,2,3若b1c1,b1+c1=2a1,an+1=an,则()ASn为递减数列BSn为递增数列CS2n1为递增数列,S
4、2n为递减数列DS2n1为递减数列,S2n为递增数列二.填空题:本大题共4小题,每小题5分.13(5分)已知两个单位向量,的夹角为60,=t+(1t)若=0,则t=14(5分)若数列an的前n项和为Sn=an+,则数列an的通项公式是an=15(5分)设当x=时,函数f(x)=sinx2cosx取得最大值,则cos=16(5分)若函数f(x)=(1x2)(x2+ax+b)的图象关于直线x=2对称,则f(x)的最大值为三、解答题:解答应写出文字说明,证明过程或演算步骤.17(12分)如图,在ABC中,ABC=90,AB=,BC=1,P为ABC内一点,BPC=90(1)若PB=,求PA;(2)若A
5、PB=150,求tanPBA18(12分)如图,三棱柱ABCA1B1C1中,CA=CB,AB=AA1,BAA1=60()证明ABA1C;()若平面ABC平面AA1B1B,AB=CB=2,求直线A1C与平面BB1C1C所成角的正弦值19(12分)一批产品需要进行质量检验,检验方案是:先从这批产品中任取4件作检验,这4件产品中优质品的件数记为n如果n=3,再从这批产品中任取4件作检验,若都为优质品,则这批产品通过检验;如果n=4,再从这批产品中任取1件作检验,若为优质品,则这批产品通过检验;其他情况下,这批产品都不能通过检验假设这批产品的优质品率为50%,即取出的产品是优质品的概率都为,且各件产品
6、是否为优质品相互独立()求这批产品通过检验的概率;()已知每件产品检验费用为100元,凡抽取的每件产品都需要检验,对这批产品作质量检验所需的费用记为X(单位:元),求X的分布列及数学期望20(12分)已知圆M:(x+1)2+y2=1,圆N:(x1)2+y2=9,动圆P与圆M外切并与圆N内切,圆心P的轨迹为曲线C()求C的方程;()l是与圆P,圆M都相切的一条直线,l与曲线C交于A,B两点,当圆P的半径最长时,求|AB|21(12分)已知函数f(x)=x2+ax+b,g(x)=ex(cx+d)若曲线y=f(x)和曲线y=g(x)都过点P(0,2),且在点P处有相同的切线y=4x+2()求a,b,
7、c,d的值;()若x2时,f(x)kg(x),求k的取值范围四、请考生在第22、23、24题中任选一道作答,并用2B铅笔将答题卡上所选的题目对应的题号右侧方框涂黑,按所涂题号进行评分;多涂、多答,按所涂的首题进行评分,不涂,按本选考题的首题进行评分.22(10分)(选修41:几何证明选讲)如图,直线AB为圆的切线,切点为B,点C在圆上,ABC的角平分线BE交圆于点E,DB垂直BE交圆于D()证明:DB=DC;()设圆的半径为1,BC=,延长CE交AB于点F,求BCF外接圆的半径23(选修44:坐标系与参数方程)已知曲线C1的参数方程为(t为参数),以坐标原点为极点,x轴的正半轴为极轴建立极坐标
8、系,曲线C2的极坐标方程为=2sin()把C1的参数方程化为极坐标方程;()求C1与C2交点的极坐标(0,02)24(选修45:不等式选讲)已知函数f(x)=|2x1|+|2x+a|,g(x)=x+3()当a=2时,求不等式f(x)g(x)的解集;()设a1,且当时,f(x)g(x),求a的取值范围2013年河北省高考数学试卷(理科)(全国新课标)参考答案与试题解析一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一个是符合题目要求的.1(5分)(2013新课标)已知集合A=x|x22x0,B=x|x,则()AAB=BAB=RCBADAB【分析】根据一元二次不等式的解法,
9、求出集合A,再根据的定义求出AB和AB【解答】解:集合A=x|x22x0=x|x2或x0,AB=x|2x或x0,AB=R,故选B2(5分)(2013新课标)若复数z满足(34i)z=|4+3i|,则z的虚部为()A4BC4D【分析】由题意可得 z=,再利用两个复数代数形式的乘除法法则化简为 +i,由此可得z的虚部【解答】解:复数z满足(34i)z=|4+3i|,z=+i,故z的虚部等于,故选:D3(5分)(2013新课标)为了解某地区中小学生的视力情况,拟从该地区的中小学生中抽取部分学生进行调查,事先已经了解到该地区小学、初中、高中三个学段学生的视力情况有较大差异,而男女生视力情况差异不大在下
10、面的抽样方法中,最合理的抽样方法是()A简单的随机抽样B按性别分层抽样C按学段分层抽样D系统抽样【分析】若总体由差异明显的几部分组成时,经常采用分层抽样的方法进行抽样【解答】解:我们常用的抽样方法有:简单随机抽样、分层抽样和系统抽样,而事先已经了解到该地区小学、初中、高中三个学段学生的视力情况有较大差异,而男女生视力情况差异不大了解某地区中小学生的视力情况,按学段分层抽样,这种方式具有代表性,比较合理故选:C4(5分)(2013新课标)已知双曲线C:(a0,b0)的离心率为,则C的渐近线方程为()Ay=By=Cy=xDy=【分析】由离心率和abc的关系可得b2=4a2,而渐近线方程为y=x,代
11、入可得答案【解答】解:由双曲线C:(a0,b0),则离心率e=,即4b2=a2,故渐近线方程为y=x=x,故选:D5(5分)(2013新课标)执行程序框图,如果输入的t1,3,则输出的s属于()A3,4B5,2C4,3D2,5【分析】本题考查的知识点是程序框图,分析程序中各变量、各语句的作用,再根据流程图所示的顺序,可知:该程序的作用是计算一个分段函数的函数值,由条件为t1我们可得,分段函数的分类标准,由分支结构中是否两条分支上对应的语句行,我们易得函数的解析式【解答】解:由判断框中的条件为t1,可得:函数分为两段,即t1与t1,又由满足条件时函数的解析式为:s=3t;不满足条件时,即t1时,
12、函数的解析式为:s=4tt2故分段函数的解析式为:s=,如果输入的t1,3,画出此分段函数在t1,3时的图象,则输出的s属于3,4故选A6(5分)(2013新课标)如图,有一个水平放置的透明无盖的正方体容器,容器高8cm,将一个球放在容器口,再向容器注水,当球面恰好接触水面时测得水深为6cm,如不计容器的厚度,则球的体积为()ABCD【分析】设正方体上底面所在平面截球得小圆M,可得圆心M为正方体上底面正方形的中心设球的半径为R,根据题意得球心到上底面的距离等于(R2)cm,而圆M的半径为4,由球的截面圆性质建立关于R的方程并解出R=5,用球的体积公式即可算出该球的体积【解答】解:设正方体上底面
13、所在平面截球得小圆M,则圆心M为正方体上底面正方形的中心如图设球的半径为R,根据题意得球心到上底面的距离等于(R2)cm,而圆M的半径为4,由球的截面圆性质,得R2=(R2)2+42,解出R=5,根据球的体积公式,该球的体积V=故选A7(5分)(2013新课标)设等差数列an的前n项和为Sn,若Sm1=2,Sm=0,Sm+1=3,则m=()A3B4C5D6【分析】由an与Sn的关系可求得am+1与am,进而得到公差d,由前n项和公式及Sm=0可求得a1,再由通项公式及am=2可得m值【解答】解:am=SmSm1=2,am+1=Sm+1Sm=3,所以公差d=am+1am=1,Sm=0,得a1=2
14、,所以am=2+(m1)1=2,解得m=5,故选C8(5分)(2013新课标)某几何体的三视图如图所示,则该几何体的体积为()A16+8B8+8C16+16D8+16【分析】三视图复原的几何体是一个长方体与半个圆柱的组合体,依据三视图的数据,得出组合体长、宽、高,即可求出几何体的体积【解答】解:三视图复原的几何体是一个长方体与半个圆柱的组合体,如图,其中长方体长、宽、高分别是:4,2,2,半个圆柱的底面半径为2,母线长为4长方体的体积=422=16,半个圆柱的体积=224=8所以这个几何体的体积是16+8;故选A9(5分)(2013新课标)设m为正整数,(x+y)2m展开式的二项式系数的最大值
15、为a,(x+y)2m+1展开式的二项式系数的最大值为b,若13a=7b,则m=()A5B6C7D8【分析】根据二项式系数的性质求得a和b,再利用组合数的计算公式,解方程13a=7b求得m的值【解答】解:m为正整数,由(x+y)2m展开式的二项式系数的最大值为a,以及二项式系数的性质可得a=,同理,由(x+y)2m+1展开式的二项式系数的最大值为b,可得 b=再由13a=7b,可得13=7,即 13=7,即 13=7,即 13(m+1)=7(2m+1),解得m=6,故选:B10(5分)(2013新课标)已知椭圆E:的右焦点为F(3,0),过点F的直线交椭圆E于A、B两点若AB的中点坐标为(1,1
16、),则E的方程为()ABCD【分析】设A(x1,y1),B(x2,y2),代入椭圆方程得,利用“点差法”可得利用中点坐标公式可得x1+x2=2,y1+y2=2,利用斜率计算公式可得=于是得到,化为a2=2b2,再利用c=3=,即可解得a2,b2进而得到椭圆的方程【解答】解:设A(x1,y1),B(x2,y2),代入椭圆方程得,相减得,x1+x2=2,y1+y2=2,=,化为a2=2b2,又c=3=,解得a2=18,b2=9椭圆E的方程为故选D11(5分)(2013新课标)已知函数f(x)=,若|f(x)|ax,则a的取值范围是()A(,0B(,1C2,1D2,0【分析】由函数图象的变换,结合基
17、本初等函数的图象可作出函数y=|f(x)|的图象,和函数y=ax的图象,由导数求切线斜率可得l的斜率,进而数形结合可得a的范围【解答】解:由题意可作出函数y=|f(x)|的图象,和函数y=ax的图象,由图象可知:函数y=ax的图象为过原点的直线,当直线介于l和x轴之间符合题意,直线l为曲线的切线,且此时函数y=|f(x)|在第二象限的部分解析式为y=x22x,求其导数可得y=2x2,因为x0,故y2,故直线l的斜率为2,故只需直线y=ax的斜率a介于2与0之间即可,即a2,0故选:D12(5分)(2013新课标)设AnBnCn的三边长分别为an,bn,cn,AnBnCn的面积为Sn,n=1,2
18、,3若b1c1,b1+c1=2a1,an+1=an,则()ASn为递减数列BSn为递增数列CS2n1为递增数列,S2n为递减数列DS2n1为递减数列,S2n为递增数列【分析】由an+1=an可知AnBnCn的边BnCn为定值a1,由bn+1+cn+12a1=及b1+c1=2a1得bn+cn=2a1,则在AnBnCn中边长BnCn=a1为定值,另两边AnCn、AnBn的长度之和bn+cn=2a1为定值,由此可知顶点An在以Bn、Cn为焦点的椭圆上,根据bn+1cn+1=,得bncn=,可知n+时bncn,据此可判断AnBnCn的边BnCn的高hn随着n的增大而增大,再由三角形面积公式可得到答案【
19、解答】解:b1=2a1c1且b1c1,2a1c1c1,a1c1,b1a1=2a1c1a1=a1c10,b1a1c1,又b1c1a1,2a1c1c1a1,2c1a1,由题意,+an,bn+1+cn+12an=(bn+cn2an),bn+cn2an=0,bn+cn=2an=2a1,bn+cn=2a1,又由题意,bn+1cn+1=,=a1bn,bn+1a1=,bna1=,cn=2a1bn=,=单调递增(可证当n=1时0)故选B二.填空题:本大题共4小题,每小题5分.13(5分)(2013新课标)已知两个单位向量,的夹角为60,=t+(1t)若=0,则t=2【分析】由于=0,对式子=t+(1t)两边与
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 2013 全国 统一 高考 数学试卷 理科 新课 26
限制150内