2022年八年级数学上13.3.2等边三角形第2课时含30°角的直角三角形的性质学案.docx
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_05.gif)
《2022年八年级数学上13.3.2等边三角形第2课时含30°角的直角三角形的性质学案.docx》由会员分享,可在线阅读,更多相关《2022年八年级数学上13.3.2等边三角形第2课时含30°角的直角三角形的性质学案.docx(7页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、2022年八年级数学上13.3.2等边三角形第2课时含30角的直角三角形的性质学案1432.1等边三角形(三) 1432.1等边三角形(三)教学过程一、复习等腰三角形的判定与性质二、新授:1等边三角形的性质:三边相等;三角都是60;三边上的中线、高、角平分线相等2等边三角形的判定:三个角都相等的三角形是等边三角形;有一个角是60的等腰三角形是等边三角形;在直角三角形中,假如一个锐角等于30,那么它所对的直角边等于斜边的一半留意:推论1是判定一个三角形为等边三角形的一个重要方法.推论2说明在等腰三角形中,只要有一个角是600,不论这个角是顶角还是底角,就可以判定这个三角形是等边三角形。推论3反映
2、的是直角三角形中边与角之间的关系.3由学生解答课本148页的例子;4补充:已知如图所示,在ABC中,BD是AC边上的中线,DBBC于B,ABC=120o,求证:AB=2BC分析由已知条件可得ABD=30o,如能构造有一个锐角是30o的直角三角形,斜边是AB,30o角所对的边是与BC相等的线段,问题就得到解决了.B 证明:过A作AEBC交BD的延长线于EDBBC(已知)AED=90o(两直线平行内错角相等)在ADE和CDB中ADECDB(AAS)AE=CB(全等三角形的对应边相等)ABC=120o,DBBC(已知)ABD=30o在RtABE中,ABD=30oAE=AB(在直角三角形中,假如一个锐
3、角等于30o,那么它所对的直角边等于斜边的一半)BC=AB即AB=2BC点评本题还可过C作CEAB5、训练:如图所示,在等边ABC的边的延长线上取一点E,以CE为边作等边CDE,使它与ABC位于直线AE的同一侧,点M为线段AD的中点,点N为线段BE的中点,求证:CNM是等边三角形.分析由已知易证明ADCBEC,得BE=AD,EBC=DAE,而M、N分别为BE、AD的中点,于是有BN=AM,要证明CNM是等边三角形,只须证MC=CN,MCN=60o,所以要证NBCMAC,由上述已推出的结论,依据边角边公里,可证得NBCMAC证明:等边ABC和等边DCE,BC=AC,CD=CE,(等边三角形的边相
4、等)BCA=DCE=60o(等边三角形的每个角都是60)BCE=DCABCEACD(SAS)EBC=DAC(全等三角形的对应角相等)BE=AD(全等三角形的对应边相等)又BN=BE,AM=AD(中点定义)BN=AMNBCMAC(SAS)CM=CN(全等三角形的对应边相等)ACM=BCN(全等三角形的对应角相等)MCN=ACB=60oMCN为等边三角形(有一个角等于60o的等腰三角形是等边三角形)解题小结1.本题通过将分析法和综合法并用进行分析,得到了本题的证题思路,较困难的几何问题常常用这种方法进行分析2.本题反复利用等边三角形的性质,证得了两对三角形全等,从而证得MCN是一个含60o角的等腰
5、三角形,在较困难的图形中,如何精确地找到所须要的全等三角形是证题的关键.三、小结本节学问四、作业:课本151页第13,14题 143等边三角形(一)143等边三角形(一)教学目的1使学生娴熟地运用等腰三角形的性质求等腰三角形内角的角度。2熟悉等边三角形的性质及判定2通过例题教学,帮助学生总结代数法求几何角度,线段长度的方法。教学重点、等腰三角形的性质及其应用。教学难点简洁的逻辑推理。教学过程一、复习巩固1叙述等腰三角形的性质,它是怎么得到的?等腰三角形的两个底角相等,也可以简称“等边对等角”。把等腰三角形对折,折叠两部分是相互重合的,即AB与AC重合,点B与点C重合,线段BD与CD也重合,所以
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 2022 八年 级数 13.3 等边三角形 课时 30 直角三角形 性质
![提示](https://www.taowenge.com/images/bang_tan.gif)
限制150内