北师大七年级下第二章平行线与相交线学案及答案.docx
《北师大七年级下第二章平行线与相交线学案及答案.docx》由会员分享,可在线阅读,更多相关《北师大七年级下第二章平行线与相交线学案及答案.docx(14页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、北师大七年级下第二章平行线与相交线学案及答案北师大版七年级数学下册其次章学问点:平行线与相交线 北师大版七年级数学下册其次章学问点:平行线与相交线 一、平行线与相交线 平行线:在同一平面内,不相交的两条直线叫做平行线。 若两条直线只有一个公共点,我们称这两条直线为相交线。 二、余角与补角 1、假如两个角的和是直角,那么称这两个角互为余角,简称为互余,称其中一个角是另一个角的余角。 2、假如两个角的和是平角,那么称这两个角互为补角,简称为互补,称其中一个角是另一个角的补角。 3、互余和互补是指两角和为直角或两角和为平角,它们只与角的度数有关,与角的位置无关。 4、余角和补角的性质:同角或等角的余
2、角相等,同角或等角的补角相等。 5、余角和补角的性质用数学语言可表示为: (1)1+2900(1800)1+3900(1800),则23(同角的余角(或补角)相等)。 (2)1+2900(1800)3+4900(1800),且14,则23(等角的余角(或补角)相等)。 6、余角和补角的性质是证明两角相等的一个重要方法。 三、对顶角 1、两条直线相交成四个角,其中不相邻的两个角是对顶角。 2、一个角的两边分别是另一个角的两边的反向延长线,这两个角叫做对顶角。 3、对顶角的性质:对顶角相等。 4、对顶角的性质在今后的推理说明中应用特别广泛,它是证明两个角相等的依据及重要桥梁。 5、对顶角是从位置上
3、定义的,对顶角肯定相等,但相等的角不肯定是对顶角。 四、垂线及其性质 1、垂线:两条直线相交成直角时,叫做相互垂直,其中一条叫做另一条的垂线。 2、垂线的性质: 性质1:过一点有且只有一条直线与已知直线垂直。 性质2:连接直线外一点与直线上各点的全部线段中,垂线段最短。 五、同位角、内错角、同旁内角 1、两条直线被第三条直线所截,形成了8个角。 2、同位角:两个角都在两条直线的同侧,并且在第三条直线(截线)的同旁,这样的一对角叫做同位角。 3、内错角:两个角都在两条直线之间,并且在第三条直线(截线)的两旁,这样的一对角叫做内错角。 4、同旁内角:两个角都在两条直线之间,并且在第三条直线(截线)
4、的同旁,这样的一对角叫同旁内角。 5、这三种角只与位置有关,与大小无关,通常状况下,它们之间不存在固定的大小关系。 六、六类角 1、补角、余角、对顶角、同位角、内错角、同旁内角六类角都是对两角来说的。 2、余角、补角只有数量上的关系,与其位置无关。 3、同位角、内错角、同旁内角只有位置上的关系,与其数量无关。 4、对顶角既有数量关系,又有位置关系。 七、平行线的判定方法 1、同位角相等,两直线平行。 2、内错角相等,两直线平行。 3、同旁内角互补,两直线平行。 4、在同一平面内,假如两条直线都平行于第三条直线,那么这两条直线平行。 5、在同一平面内,假如两条直线都垂直于第三条直线,那么这两条直
5、线平行。 八、平行线的性质 1、两直线平行,同位角相等。 2、两直线平行,内错角相等。 3、两直线平行,同旁内角互补。 4、平行线的判定与性质具备互逆的特征,其关系如下: 在应用时要正确区分主动向上的题设和结论。 九、尺规作线段和角 1、在几何里,只用没有刻度的直尺和圆规作图称为尺规作图。 2、尺规作图是最基本、最常见的作图方法,通常叫基本作图。 3、尺规作图中直尺的功能是: (1)在两点间连接一条线段; (2)将线段向两方延长。 4、尺规作图中圆规的功能是: (1)以随意一点为圆心,随意长为半径作一个圆; (2)以随意一点为圆心,随意长为半径画一段弧; 5、娴熟驾驭以下作图语言: (1)作射
6、线; (2)在射线上截取=; (3)在射线上依次截取=; (4)以点为圆心,为半径画弧,交于点; (5)分别以点、点为圆心,以、为半径作弧,两弧相交于点; (6)过点和点画直线(或画射线); (7)在的外部(或内部)画=; 6、在作较困难图形时,涉及基本作图的地方,不必重复作图的具体过程,只用一句话概括叙述就可以了。 (1)画线段=; (2)画=; 相交线与平行线 第五章相交线与平行线课题:5.1.1相交线课型:新授学习目标:1、了解两条直线相交所构成的角,理解并驾驭对顶角、邻补角的概念和性质。2、理解对顶角性质的推导过程,并会用这特性质进行简洁的计算。3、通过辨别对顶角与邻补角,培育识图的实
7、力。学习重点:邻补角和对顶角的概念及对顶角相等的性质。学习难点:在较困难的图形中精确分辨对顶角和邻补角。学具打算:剪刀、量角器学习过程:一、学前打算1、预习疑难:。2、填空:两个角的和是,这样的两个角叫做互为补角,即其中一个角是另一个角的补角。同角或的补角。二、探究与思索(一)邻补角、对顶角1、视察思索:剪刀剪开纸张的过程,随着两个把手之间的角渐渐变小,剪刀刃之间的角度也相应。我们把剪刀的构成抽象为两条直线,就是我们要探讨的两条相交直线所成的角的问题。2、探究活动:随意画两条相交直线,在形成的四个角(1,2,3,4)中,两两相配共能组成对角。分别是。 分别测量一下各个角的度数,是否发觉规律?你
8、能否把他们分类?完成教材中2页表格。再画两条相交直线比较。图1 3、归纳:邻补角、对顶角定义邻补角。两条直线相交所构成的四个角中,有公共顶点的两个角是对顶角。4、总结:两条直线相交所构成的四个角中,邻补角有对。对顶角有对。对顶角形成的前提条件是两条直线相交。5、对应练习:下列各图中,哪个图有对顶角?BBBA CDCDCDAABBB(A) CDCACDAD (二)邻补角、对顶角的性质1、邻补角的性质:邻补角。留意:邻补角是互补的一种特别的状况,数量上,位置上有一条。2、对顶角的性质:完成推理过程如图,1+2=,2+3=。(邻补角定义)1=180,3=180(等式性质)1=3(等量代换) 或者1与
9、2互补,3与2互补(邻补角定义),l3(同角的补角相等)由上面推理可知,对顶角的性质:对顶角。三、应用(一)例如图,已知直线a、b相交。140,求2、3、4的度数 解:3140()。2180118040140()。42140()。 你还有别的思路吗?试着写出来 (二)练一练:教材3页练习(在书上完成)(三)变式训练:把例题中140这个条件换成其他条件,而结论不变,自编几道题变式1:把l40变为2140变式2:把140变为2是l的3倍变式3:把140变为1:22:9四、学习体会:1、本节课你有哪些收获?你还有哪些怀疑?2、预习时的疑难解决了吗?五、自我检测:(一)选择题:1.如图所示,1和2是对
10、顶角的图形有()A.1个B.2个C.3个D.4个2.如图1所示,三条直线AB,CD,EF相交于一点O,则AOE+DOB+COF等于()A.150B.180C.210D.120(1)(2)3.下列说法正确的有()对顶角相等;相等的角是对顶角;若两个角不相等,则这两个角肯定不是对顶角;若两个角不是对顶角,则这两个角不相等.A.1个B.2个C.3个D.4个4.如图2所示,直线AB和CD相交于点O,若AOD与BOC的和为236,则AOC的度数为()A.62B.118C.72D.59(二)填空题:1.如图3所示,AB与CD相交所成的四个角中,1的邻补角是_,1的对顶角_.(3)(4)(5)2.如图3所示
11、,若1=25,则2=_,3=_,4=_.3.如图4所示,直线AB,CD,EF相交于点O,则AOD的对顶角是_,AOC的邻补角是_;若AOC=50,则BOD=_,COB=_.4.如图5所示,直线AB,CD相交于点O,若1-2=70,则BOD=_,2=_.5、已知1与2是对顶角,1与3互为补角,则2+3=。六、拓展延长1、如图所示,直线a,b,c两两相交,1=23,2=65,求4的度数.三、学习体会:1、本节课你有哪些收获?你还有哪些怀疑?2、预习时的疑难解决了吗? 四、自我检测:(一)选择题:1.如图1所示,下列说法不正确的是()A.点B到AC的垂线段是线段AB;B.点C到AB的垂线段是线段AC
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 北师大 年级 下第 平行线 相交 线学案 答案
限制150内