高二数学下册《向量的线性运算》复习资料.docx
《高二数学下册《向量的线性运算》复习资料.docx》由会员分享,可在线阅读,更多相关《高二数学下册《向量的线性运算》复习资料.docx(18页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、高二数学下册向量的线性运算复习资料向量的线性运算教学设计 向量的线性运算教学设计 一、教学目标 1理解向量的线性运算的意义,会化简线性运算的算式,会画图表示简洁的线性运算结果. 2知道用两个不平行的向量表示平面内一个向量的表达式的特征。会在较熟识的几何图形中将一个向量表示为两个给定的不平行向量的线性组合 二、教学重点及难点 1.向量的线性运算的意义,线性组合的概念; 2.线性组合的简洁应用。 三、教学设计要点 1.情境设计:巩固复习再引入新课题; 2.教学内容的处理:学问点与详细题目结合,从而得以使学生敏捷运用学问; 3.教学方法:合作沟通和老师引导相结合; 四、教具的打算 粉笔、三角尺、多媒
2、体演示PPT 五、教学过程 (一)新课导入 我们已经学习了向量加法、减法以及实数与向量相乘等运算,并且知道,向量的减法可以转化为加法运算;向量加法以及实数与向量相乘,有类似于实数加法和乘法的运算律.这些运算还可以组合起来,假如没有括号,那么运算的依次是先将实数与向量相乘,再进行向量的加减. (二)探究新知 例题1:已知两个不平行的向量a,b 求作:3a+2b;a-2b 概念:向量加法、减法、实数与向量相乘以及它们的混合运算叫做向量的线性运算 3a+2b;a-2b;3(a+5b)等,都是向量的线性运算 提问:-2a+(a-2b)是向量的线性运算? 例题2:已知两个不平行的向量a,b 求作:(a+
3、b)-(7/2a-2b) 强调:先将算式化简再选择适当的作图方法 概念:假如a,b是两个不平行的向量,c是平面内的一个向量,那么c可以用a,b来表示,并且通常将其表达式整理成:c=xa+yb的形式,其中x,y是实数。xa+yb叫做a,b的线性组合。 例如:a,b是两个不平行的向量,向量OE=3a+2b,这时就说,OE可由a,b的线性组合表示。 例题3:如图,点M是CAB的边AB的中点.设向量CA=a,CB=b,试用a,b的线性组合表示向量CM (三)巩固练习:练习24.7(1) (四)课堂小结: (五)作业布置:练习册24.7(1) 人教版高二数学必修四平面对量的线性运算教学设计 中学数学必修
4、四平面对量的线性运算教案 教学目标 一、学问与技能 1驾驭向量的加减法运算,并理解其几何意义. 2会用三角形法则和平行四边形法则作两个向量的和向量和差向量,培育数形结合解决问题的实力. 3通过将向量运算与熟识的数的运算进行类比,使学生驾驭向量加减法运算的交换律和结合律,并会用它们进行向量计算,渗透类比的数学方法; 二、过程与方法 1位移、速度和力这些物理量都是向量,可以合成,而且知道这些矢量的合成都遵循平行四边形法则,由此引入本课题 2运用向量的定义和向量相等的定义得出向量加减法的三角形法则、平行四边形法则,并对向量加法的交换律、结合律进行证明,同时运用他们进行相关计算,这可让同学们进一步加强
5、对向量几何意义的理解三、情感、看法与价值观 1通过本节内容的学习,让学生相识事物之间的相互转化,培育学生的数学应用意识 2体会数学在生活中的作用培育学生类比、迁移、分类、归纳等实力教学重点、难点教学重点:会用向量加法的三角形法则和平行四边形法则作两个向量的和向量和差向量 教学难点:理解向量加减法的定义 教学关键:向量加法的三角形法则和平行四边形法则的探究引导. 教学突破方法:由物理中力的合成与分解拓展延长,引导学生探讨得到结论教法与学法导航 教学方法;启发诱导,讲练结合 学习方法:数能进行运算,向量是否也能进行运算呢?数的加法启发我们,从运算的角度看,位移的合成、力的合成可看作向量的加法借助于
6、物理中位移的合成、力的合成来理解向量的加法,让学生顺理成章接受向量的加法定义结合图形驾驭向量加法的三角形法则和平行四边形法则联系数的运算律理解和驾驭向量加法运算的交换律和结合律教学打算 老师打算:多媒体或实物投影仪、尺规 1 老师备课系统多媒体教案 学生打算:练习本、尺规.教学过程 一、创设情境,导入新课上一节,我们一起学习了向量的有关概念,明确了向量的表示方法,了解了零向量、单位向量、平行向量、相等向量等概念,并接触了这些概念的辨析推断数能进行运算,向量是否也能进行运算呢?这一节,我们将借助于物理中位移的合成、力的合成来学习向量的加法和减法 二、主题探究,合作沟通提出问题: 1.类比数的加法
7、,猜想向量的加法,应怎样定义向量的加法?2.向量加法的法则是什么?3.与数的运算法则有什么不同? 师生互动:向量是既有大小、又有方向的量,老师引导学生回顾物理中位移的概念,位移可以合成,如图某对象从A点经B点到C点,两次位移AB、BC的结果,与A点干脆到C点的位移AC结果相同力也可以合成,老师引导,让学生共同探究如下的问题. 图(1)表示橡皮条在两个力的作用下,沿着GC的方向伸长了EO;图(2)表示撤去F1和F2,用一个力F作用在橡皮条上,使橡皮条沿着相同的方向伸长相同的长度 变更力F1与F2的大小和方向,重复以上的试验,你能发觉F与F1、F2之间的关系吗? 力F对橡皮条产生的效果与力F1与F
8、2共同作用产生的效果相同,物理学中把力F叫做F1与F2的合力2 人教版新课标一般中学数学必修 合力F与力F1、F2有怎样的关系呢?由图(3)发觉,力F在以F1、F2为邻边的平行四边形的对角线上,并且大小等于平行四边形对角线的长 数的加法启发我们,从运算的角度看,F可以认为是F1与F2的和,即位移、力的合成看作向量的加法 探讨结果:1.向量加法的定义:如下图,已知非零向量a、b,在平面内任取一点A,作AB=a,则向量AC叫做a与b的和,记作a+b,即a+b=AB+BC=AC求BC=b,两个向量和的运算,叫做向量的加法 2.向量加法的法则: (1)向量加法的三角形法则 在定义中所给出的求向量和的方
9、法就是向量加法的三角形法则运用这一法则时要特殊留意“首尾相接”,即其次个向量要以第一个向量的终点为起点,则由第一个向量的起点指向其次个向量的终点的向量即为和向量 位移的合成可以看作向量加法三角形法则的物理模型(2)向量加法的平行四边形法则 如图,以同一点O为起点的两个已知向量a、b为邻边作平行四边形,则以O为起点的对角线OC就是a与b的和我们把这种作两个向量和的方法叫做向量加法的平行四边形法则 力的合成可以看作向量加法平行四边形法则的物理模型 对于零向量与任一向量a,我们规定a+0=0+a=a 提出问题 1.两共线向量求和时,用三角形法则较为合适当在数轴上表示两个向量时,它们的加法与数的加法有
10、什么关系? 2.思索|a+b|,|a|,|b|存在着怎样的关系? 3.数的运算和运算律紧密联系,运算律可以有效地简化运算类似地,向量的加法是否也有运算律呢? 师生互动:视察实际例子,老师启发学生思索,并适时点拨,诱导,探究向量的加法在特别状况下的运算,共线向量加法与数的加法之间的关系数的加法满意交换律与结合律,即对随意a,bR,有a+b=b+a,(a+b)+c=a+(b+c)随意向量a,b的加法是否也满意交换律和结合律?引导学生画图进行探究 探讨结果:1.两个数相加其结果是一个数,对应于数轴上的一个点;在数轴上的两个向量相加,它们的和仍是一个向量,对应于数轴上的一条有向线段 2.当a,b不共线
11、时,|a+b|a|+|b|(即三角形两边之和大于第三边);当a,b共线且方向相同时,|a+b|=|a|+|b|; 当a,b共线且方向相反时,|a+b|=|a|-|b|(或|b|-|a|)其中当向量a的长度大于向量b的长度时,|a+b|=|a|-|b|;当向量a的长度小于向量b的长度时,|a+b|=|b|-|a| 一般地,我们有|a+b|a|+|b| 3.如下左图,作AB=a,AD=b,以AB、AD为邻边作 ABCD,则BC=b,DC=a 因为AC=AB+AD=a+b,AC=AD+DC=b+a,所以a+b=b+a 如上右图,因为AD=AC+CD=(AB+BC)+CD=(a+b)+c, ,所以(a
12、+b)+c=a+(b+c)AD=AB+BD=AB+(BC+CD)=a+(b+c) 综上所述,向量的加法满意交换律和结合律提出问题 如何理解向量的减法? 向量的加法运算有平行四边形法则和三角形法则,那么,向量的减法是否也有类似的法则? 师生互动:数的减法运算是数的加法运算的逆运算,数的减法定义即减去一个数等于加上这个数的相反数,因此向量的减法运算也可定义为向量加法运算的逆运算可类比数的减法运算,我们定义向量的减法运算,也应引进一个新的概念,这个概念又该如何定义? 引导学生思索,相反向量有哪些性质? 由于方向反转两次仍回到原来的方向,因此a和-a互为相反向量于是 -(-a)=a 我们规定,零向量的
13、相反向量仍是零向量任一向量与其相反向量的和是零向量,即 a+(-a)=(-a)+a=0 所以,假如a、b是互为相反的向量,那么4 人教版新课标一般中学数学必修 a=-b,b=-a,a+b=0 A.平行四边形法则 如上图,设向量AB=b,AC=a,则AD=-b,由向量减法的定义,知AE=a+(-b)=a-b又b+BC=a,所以BC=a-b 由此,我们得到a-b的作图方法B.三角形法则 如上图,已知a、b,在平面内任取一点O,作OA=a,OB=b,则BA=a-b,即a-b可以表示为从b的终点指向a的终点的向量,这是向量减法的几何意义 探讨结果: 向量减法的定义我们定义a-b=a+(-b),即减去一
14、个向量相当于加上这个向量的相反向量 规定:零向量的相反向量是零向量 向量的减法运算也有平行四边形法则和三角形法则,这也正是向量的运算的几何意义所在,是数形结合思想的重要体现 三、拓展创新,应用提高 例1如下左图,已知向量a、b,求作向量a+b 活动:老师引导学生,让学生探究分别用向量加法的三角形法则和平行四边形法则作两个向量的和向量在向量加法的作图中,学生体会作法中在平面内任取一点O的依据它体现了向量起点的随意性在向量作图时,一般都须要进行向量的平移,用平行四边形法则作图时应强调向量的起点放在一起,而用三角形法则作图则要求首尾相连 解:作法一:在平面内任取一点O(上中图),作OA=a,AB=b
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 向量的线性运算 数学 下册 向量 线性 运算 复习资料
限制150内