高一数学上册知识点整理:二次函数知识点的定义和解题思路.docx
《高一数学上册知识点整理:二次函数知识点的定义和解题思路.docx》由会员分享,可在线阅读,更多相关《高一数学上册知识点整理:二次函数知识点的定义和解题思路.docx(7页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、高一数学上册知识点整理:二次函数知识点的定义和解题思路高一数学上册学问点整理:函数的定义域 高一数学上册学问点整理:函数的定义域 定义域(中学函数定义)设A,B是两个非空的数集,假如按某个确定的对应关系f,使对于集合A中的随意一个数x,在集合B中都有唯一确定的数f(x)和它对应,那么就称f:A-B为集合A到集合B的一个函数,记作y=f(x),x属于集合A。其中,x叫作自变量,x的取值范围A叫作函数的定义域;值域名称定义函数中,应变量的取值范围叫做这个函数的值域函数的值域,在数学中是函数在定义域中应变量全部值的集合常用的求值域的方法(1)化归法;(2)图象法(数形结合),(3)函数单调性法,(4
2、)配方法,(5)换元法,(6)反函数法(逆求法),(7)判别式法,(8)复合函数法,(9)三角代换法,(10)基本不等式法等关于函数值域误区定义域、对应法则、值域是函数构造的三个基本“元件”。平常数学中,实行“定义域优先”的原则,无可置疑。然而事物均具有二重性,在强化定义域问题的同时,往往就减弱或谈化了,对值域问题的探究,造成了一手“硬”一手“软”,使学生对函数的驾驭时好时坏,事实上,定义域与值域二者的位置是相当的,绝不能厚此薄皮,何况它们二者随时处于相互转化之中(典型的例子是互为反函数定义域与值域的相互转化)。假如函数的值域是无限集的话,那么求函数值域不总是简单的,反靠不等式的运算性质有时并
3、不能奏效,还必需联系函数的奇偶性、单调性、有界性、周期性来考虑函数的取值状况。才能获得正确答案,从这个角度来讲,求值域的问题有时比求定义域问题难,实践证明,假如加强了对值域求法的探讨和探讨,有利于对定义域内函的理解,从而深化对函数本质的相识。“范围”与“值域”相同吗?“范围”与“值域”是我们在学习中常常遇到的两个概念,很多同学经常将它们混为一谈,事实上这是两个不同的概念。“值域”是全部函数值的集合(即集合中每一个元素都是这个函数的取值),而“范围”则只是满意某个条件的一些值所在的集合(即集合中的元素不肯定都满意这个条件)。也就是说:“值域”是一个“范围”,而“范围”却不肯定是“值域”。 高一数
4、学上册学问点整理:函数定义域函数值域 高一数学上册学问点整理:函数定义域函数值域 定义域(中学函数定义)设A,B是两个非空的数集,假如按某个确定的对应关系f,使对于集合A中的随意一个数x,在集合B中都有唯一确定的数f(x)和它对应,那么就称f:A-B为集合A到集合B的一个函数,记作y=f(x),x属于集合A。其中,x叫作自变量,x的取值范围A叫作函数的定义域;值域名称定义函数中,应变量的取值范围叫做这个函数的值域函数的值域,在数学中是函数在定义域中应变量全部值的集合常用的求值域的方法(1)化归法;(2)图象法(数形结合);(3)函数单调性法;(4)配方法;(5)换元法;(6)反函数法(逆求法)
5、;(7)判别式法;(8)复合函数法;(9)三角代换法;(10)基本不等式法等关于函数值域误区定义域、对应法则、值域是函数构造的三个基本“元件”。平常数学中,实行“定义域优先”的原则,无可置疑。然而事物均具有二重性,在强化定义域问题的同时,往往就减弱或谈化了,对值域问题的探究,造成了一手“硬”一手“软”,使学生对函数的驾驭时好时坏,事实上,定义域与值域二者的位置是相当的,绝不能厚此薄皮,何况它们二者随时处于相互转化之中(典型的例子是互为反函数定义域与值域的相互转化)。假如函数的值域是无限集的话,那么求函数值域不总是简单的,反靠不等式的运算性质有时并不能奏效,还必需联系函数的奇偶性、单调性、有界性
6、、周期性来考虑函数的取值状况。才能获得正确答案,从这个角度来讲,求值域的问题有时比求定义域问题难,实践证明,假如加强了对值域求法的探讨和探讨,有利于对定义域内函的理解,从而深化对函数本质的相识。“范围”与“值域”相同吗?“范围”与“值域”是我们在学习中常常遇到的两个概念,很多同学经常将它们混为一谈,事实上这是两个不同的概念。“值域”是全部函数值的集合(即集合中每一个元素都是这个函数的取值),而“范围”则只是满意某个条件的一些值所在的集合(即集合中的元素不肯定都满意这个条件)。也就是说:“值域”是一个“范围”,而“范围”却不肯定是“值域”。 高一数学上册学问点整理:一次函数 高一数学上册学问点整
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 数学 上册 知识点 整理 二次 函数 定义 解题 思路
限制150内