高一数学下册《直线平面平行的判定及其性质》知识点人教版.docx
《高一数学下册《直线平面平行的判定及其性质》知识点人教版.docx》由会员分享,可在线阅读,更多相关《高一数学下册《直线平面平行的判定及其性质》知识点人教版.docx(14页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、高一数学下册直线平面平行的判定及其性质知识点人教版高一数学下册空间点直线平面之间的位置关系学问点人教版 高一数学下册空间点直线平面之间的位置关系学问点人教版 1.平面 (1)平面概念的理解 直观的理解:桌面、黑板面、安静的水面等等都给人以平面的直观的印象,但它们都不是平面,而仅仅是平面的一部分。 抽象的理解:平面是平的,平面是无限延展的,平面没有厚薄。 (2)平面的表示法 图形表示法:通常用平行四边形来表示平面,有时依据实际须要,也用其他的平面图形来表示平面。 字母表示:常用等希腊字母表示平面。 (3)涉及本部分内容的符号表示有: 点A在直线l内,记作; 点A不在直线l内,记作; 点A在平面内
2、,记作; 点A不在平面内,记作; 直线l在平面内,记作; 直线l不在平面内,记作; 留意:符号的运用与集合中这四个符号的运用的区分与联系。 (4)平面的基本性质 公理1:假如一条直线的两个点在一个平面内,那么这条直线上的全部点都在这个平面内。 符号表示为: 留意:假如直线上全部的点都在一个平面内,我们也说这条直线在这个平面内,或者称平面经过这条直线。 公理2:过不在一条直线上的三点,有且只有一个平面。 符号表示为:直线AB存在唯一的平面,使得。 留意:“有且只有”的含义是:“有”表示存在,“只有”表示唯一,不能用“只有”来代替此公理又可表示为:不共线的三点确定一个平面。 公理3:假如两个不重合
3、的平面有一个公共点,那么它们有且只有一条过该点的公共直线。 留意:两个平面有一条公共直线,我们说这两个平面相交,这条公共直线就叫作两个平面的交线若平面、平面相交于直线l,记作。 公理的推论: 推论1:经过一条直线和直线外的一点有且只有一个平面。 推论2:经过两条相交直线有且只有一个平面。 推论3:经过两条平行直线有且只有一个平面。 2空间直线 (1)空间两条直线的位置关系 相交直线:有且仅有一个公共点,可表示为; 平行直线:在同一个平面内,没有公共点,可表示为a/b; 异面直线:不同在任何一个平面内,没有公共点。 (2)平行直线 公理4:平行于同一条直线的两条直线相互平行。 符号表示为:设a、
4、b、c是三条直线。 定理:假如一个角的两边和另一个角的两边分别平行并且方向相同,那么这两个角相等。 (3)两条异面直线所成的角 留意:两条异面直线a,b所成的角的范围是(0,90。 两条异面直线所成的角与点O的选择位置无关,这可由前面所讲过的“等角定理”干脆得出。 由两条异面直线所成的角的定义可得出异面直线所成角的一般方法: (i)在空间任取一点,这个点通常是线段的中点或端点。 (ii)分别作两条异面直线的平行线,这个过程通常采纳平移的方法来实现。 (iii)指出哪一个角为两条异面直线所成的角,这时我们要留意两条异面直线所成的角的范围。 3空间直线与平面 直线与平面位置关系有且只有三种: (1
5、)直线在平面内:有多数个公共点; (2)直线与平面相交:有且只有一个公共点; (3)直线与平面平行:没有公共点。 4平面与平面 两个平面之间的位置关系有且只有以下两种: (1)两个平面平行:没有公共点; (2)两个平面相交:有一条公共直线。 练习题: 1在下列命题中,不是公理的是() A平行于同一个平面的两个平面相互平行 B过不在同一条直线上的三点,有且只有一个平面 C假如一条直线上的两点在一个平面内,那么这条直线上全部的点都在此平面内 D假如两个不重合的平面有一个公共点,那么它们有且只有一条过该点的公共直线 解析:B、C、D都是公理,只有A不是 答案:A 2设P表示一个点,a、b表示两条直线
6、,、表示两个平面,给出下列四个命题,其中正确的命题是() Pa,Pa abP,b ab,a,Pb,Pb b,P,PPb A B CD 解析:当aP时,Pa,P,但a,错;aP时,错; ab,Pb,Pa, 由直线a与点P确定唯一平面, 又ab,由a与b确定唯一平面,但经过直线a与点P,与重合,b,故正确; 两个平面的公共点必在其交线上,故正确 答案:D 高一数学下册直线的方程学问点人教版 高一数学下册直线的方程学问点人教版 定义: 从平面解析几何的角度来看,平面上的直线就是由平面直角坐标系中的一个二元一次方程所表示的图形。求两条直线的交点,只需把这两个二元一次方程联立求解,当这个联立方程组无解时
7、,两直线平行;有无穷多解时,两直线重合;只有一解时,两直线相交于一点。常用直线向上方向与X轴正向的夹角(叫直线的倾斜角)或该角的正切(称直线的斜率)来表示平面上直线(对于X轴)的倾斜程度。可以通过斜率来推断两条直线是否相互平行或相互垂直,也可计算它们的交角。直线与某个坐标轴的交点在该坐标轴上的坐标,称为直线在该坐标轴上的截距。直线在平面上的位置,由它的斜率和一个截距完全确定。在空间,两个平面相交时,交线为一条直线。因此,在空间直角坐标系中,用两个表示平面的三元一次方程联立,作为它们相交所得直线的方程。 表达式: 斜截式:y=kx+b 两点式:(y-y1)/(y1-y2)=(x-x1)/(x1-
8、x2) 点斜式:y-y1=k(x-x1) 截距式:(x/a)+(y/b)=0 补充一下:最基本的标准方程不要忘了,AX+BY+C=0, 因为,上面的四种直线方程不包含斜率K不存在的状况,如x=3,这条直线就不能用上面的四种形式表示,解题过程中尤其要留意,K不存在的状况。 直线与平面平行、平面与平面平行的判定教案 第一课时直线与平面平行、平面与平面平行的判定 (一)教学目标1学问与技能(1)理解并驾驭直线与平面平行、平面与平面平行的判定定理;(2)进一步培育学生视察、发觉的实力和空间想象实力;2过程与方法学生通过视察图形,借助已有学问,驾驭直线与平面平行、平面与平面平行的判定定理.3情感、看法与
9、价值观(1)让学生在发觉中学习,增加学习的主动性;(2)让学生了解空间与平面相互转换的数学思想.(二)教学重点、难点重点、难点:直线与平面平行、平面与平面平行的判定定理及应用.(三)教学方法借助实物,让学生通过视察、思索、沟通、探讨等理解判定定理,老师赐予适当的引导、点拔.教学过程教学内容师生互动设计意图新课导入1直线和平面平行的重要性2问题(1)怎样判定直线与平面平行呢?(2)如图,直线a与平面平行吗?老师讲解并描述直线和平面的重要性并提出问题:怎样判定直线与平面平行?生:直线和平面没有公共点.师:如图,直线和平面平行吗?生:不好判定.师:直线与平面平行,可以干脆用定义来检验,但“没有公共点
10、”不好验证所以我们来找寻比较好用又便于验证的判定定理.复习巩固点出主题探究新知一直线和平面平行的判定1问题2:如图,将一本书平放在桌面上,翻动收的封面,封面边缘AB所在直线与桌面所在平面具有什么样的位置关系?2问题3:如图,假如在平面内有直线b与直线a平行,那么直线a与平面的位置关系如何?是否可以保证直线a与平面平行?2直线和平面平行的判定定理.平面外一条直线与此平面内的一条直线平行,则该直线与此平面平行.符号表示:老师做试验,学生视察并思索问题.生:平行师:问题2与问题1有什么区分?生:问题2增加了条件:平面外.直线平行于平面内直线.师投影问题3,学生探讨、沟通老师引导,要探讨直线a与平面有
11、没有公共点,可转化为下面两个问题:(1)这两条直线是否共面?(2)直线a与平面是否相交?生1:直线a直线b,所以a、b共面.生2:设a、b确定一个平面,且,则A为的公共点,又b为面的公共直线,所以Ab,即a=A,但ab冲突直线a与平面不相交.师:依据刚才分析,我们得出以下定理师:定理告知我们,可以通过直线间的平行,推证直线与平面平行.这是处理空间位置关系一种常用方法,即将直线与平面平行关系(空间问题)转化为直线间平行关系(平面问题).通过试验,加深理解.通过探讨,培育学生分析问题的实力. 画龙点睛,加深对学问理解完善学问结构.典例分析例1已知:空间四边形ABCD,E、F分别是AB、AD的中点.
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 直线平面平行的判定及其性质 数学 下册 直线 平面 平行 判定 及其 性质 知识点 人教版
限制150内