2018年中考复习二次函数综合应用(共27页).docx
《2018年中考复习二次函数综合应用(共27页).docx》由会员分享,可在线阅读,更多相关《2018年中考复习二次函数综合应用(共27页).docx(29页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、精选优质文档-倾情为你奉上2018年中考复习二次函数综合应用类型一 线段、周长问题1、(2016淄博23(9分)已知,点M是二次函数y=ax2(a0)图象上的一点,点F的坐标为(0,),直角坐标系中的坐标原点O与点M,F在同一个圆上,圆心Q的纵坐标为(1)求a的值;(2)当O,Q,M三点在同一条直线上时,求点M和点Q的坐标;(3)当点M在第一象限时,过点M作MNx轴,垂足为点N,求证:MF=MN+OF【考点】二次函数的应用菁优网版权所有【分析】(1)设Q(m,),F(0,),根据QO=QF列出方程即可解决问题(2)设M(t,t2),Q(m,),根据KOM=KOQ,求出t、m的关系,根据QO=Q
2、M列出方程即可解决问题(3)设M(n,n2)(n0),则N(n,0),F(0,),利用勾股定理求出MF即可解决问题专心-专注-专业【解答】解:(1)圆心O的纵坐标为,设Q(m,),F(0,),QO=QF,m2+()2=m2+()2,a=1,抛物线为y=x2(2)M在抛物线上,设M(t,t2),Q(m,),O、Q、M在同一直线上,KOM=KOQ,=,m=,QO=QM,m2+()2=(mt)2=(t2)2,整理得到:t2+t4+t22mt=0,4t4+3t21=0,(t2+1)(4t21)=0,t1=,t2=,当t1=时,m1=,当t2=时,m2=M1(,),Q1(,),M2(,),Q2(,)(3
3、)设M(n,n2)(n0),N(n,0),F(0,),MF=n2+,MN+OF=n2+,MF=MN+OF【点评】本题考查二次函数的应用、三点共线的条件、勾股定理等知识,解题的关键是设参数解决问题,把问题转化为方程解决,属于中考常考题型2、(2017年东营25题12分)如图,直线y=x+分别与x轴、y轴交于B、C两点,点A在x轴上,ACB=90,抛物线y=ax2+bx+经过A,B两点(1)求A、B两点的坐标;(2)求抛物线的解析式;(3)点M是直线BC上方抛物线上的一点,过点M作MHBC于点H,作MDy轴交BC于点D,求DMH周长的最大值【答案】(1)(1,0)(2)y=x2+x+ (3) 【解
4、析】试题分析:(1)由直线解析式可求得B、C坐标,在RtBOC中由三角函数定义可求得OCB=60,则在RtAOC中可得ACO=30,利用三角函数的定义可求得OA,则可求得A点坐标;(2)由A、B两点坐标,利用待定系数法可求得抛物线解析式;(3)由平行线的性质可知MDH=BCO=60,在RtDMH中利用三角函数的定义可得到DH、MH与DM的关系,可设出M点的坐标,则可表示出DM的长,从而可表示出DMH的周长,利用二次函数的性质可求得其最大值=tan30=,即=,解得AO=1,学科网A(1,0);(2)抛物线y=ax2+bx+经过A,B两点, ,解得 ,抛物线解析式为y=x2+x+;(3)MDy轴
5、,MHBC,MDH=BCO=60,则DMH=30,DH=DM,MH=DM,DMH的周长=DM+DH+MH=DM+DM+DM=DM,当DM有最大值时,其周长有最大值,点M是直线BC上方抛物线上的一点,考点:1、二次函数的综合应用,2、待定系数法,3、三角函数的定义,4方程思想类型二 图形面积问题3、(2016烟台25题12分)如图1,已知平行四边形ABCD顶点A的坐标为(2,6),点B在y轴上,且ADBCx轴,过B,C,D三点的抛物线y=ax2+bx+c(a0)的顶点坐标为(2,2),点F(m,6)是线段AD上一动点,直线OF交BC于点E(1)求抛物线的表达式;(2)设四边形ABEF的面积为S,
6、请求出S与m的函数关系式,并写出自变量m的取值范围;(3)如图2,过点F作FMx轴,垂足为M,交直线AC于P,过点P作PNy轴,垂足为N,连接MN,直线AC分别交x轴,y轴于点H,G,试求线段MN的最小值,并直接写出此时m的值【考点】二次函数综合题【分析】(1)根据平行四边形的性质和抛物线的特点确定出点D,然而用待定系数法确定出抛物线的解析式(2)根据ADBCx轴,且AD,BC间的距离为3,BC,x轴的距离也为3,F(m,6),确定出E(,3),从而求出梯形的面积(3)先求出直线AC解析式,然后根据FMx轴,表示出点P(m, m+9),最后根据勾股定理求出MN=,从而确定出MN最大值和m的值【
7、解答】解:(1)过B,C,D三点的抛物线y=ax2+bx+c(a0)的顶点坐标为(2,2),点C的横坐标为4,BC=4,四边形ABCD为平行四边形,AD=BC=4,A(2,6),D(6,6),设抛物线解析式为y=a(x2)2+2,点D在此抛物线上,6=a(62)2+2,a=,抛物线解析式为y=(x2)2+2=x2x+3,(2)ADBCx轴,且AD,BC间的距离为3,BC,x轴的距离也为3,F(m,6)E(,3),BE=,S=(AF+BE)3=(m2+)3=m3点F(m,6)是线段AD上,2m6,即:S=m3(2m6)(3)抛物线解析式为y=x2x+3,B(0,3),C(4,3),A(2,6),
8、直线AC解析式为y=x+9,FMx轴,垂足为M,交直线AC于PP(m, m+9),(2m6)PN=m,PM=m+9,FMx轴,垂足为M,交直线AC于P,过点P作PNy轴,MPN=90,MN=2m6,当m=时,MN最大=4、(2016年泰安28题)如图,在平面直角坐标系中,抛物线y=ax2+bx+c的顶点坐标为(2,9),与y轴交于点A(0,5),与x轴交于点E、B(1)求二次函数y=ax2+bx+c的表达式;(2)过点A作AC平行于x轴,交抛物线于点C,点P为抛物线上的一点(点P在AC上方),作PD平行与y轴交AB于点D,问当点P在何位置时,四边形APCD的面积最大?并求出最大面积;(3)若点
9、M在抛物线上,点N在其对称轴上,使得以A、E、N、M为顶点的四边形是平行四边形,且AE为其一边,求点M、N的坐标【分析】(1)设出抛物线解析式,用待定系数法求解即可;(2)先求出直线AB解析式,设出点P坐标(x,x2+4x+5),建立函数关系式S四边形APCD=2x2+10x,根据二次函数求出极值;(3)先判断出HMNAOE,求出M点的横坐标,从而求出点M,N的坐标【解答】解:(1)设抛物线解析式为y=a(x2)2+9,抛物线与y轴交于点A(0,5),4a+9=5,a=1,y=(x2)2+9=x2+4x+5,(2)当y=0时,x2+4x+5=0,x1=1,x2=5,E(1,0),B(5,0),
10、设直线AB的解析式为y=mx+n,A(0,5),B(5,0),m=1,n=5,直线AB的解析式为y=x+5;设P(x,x2+4x+5),D(x,x+5),PD=x2+4x+5+x5=x2+5x,AC=4,S四边形APCD=ACPD=2(x2+5x)=2x2+10x,当x=时,S四边形APCD最大=,(3)如图,过M作MH垂直于对称轴,垂足为H,MNAE,MN=AE,HMNAOE,HM=OE=1,M点的横坐标为x=3或x=1,当x=1时,M点纵坐标为8,当x=3时,M点纵坐标为8,M点的坐标为M1(1,8)或M2(3,8),A(0,5),E(1,0),直线AE解析式为y=5x+5,MNAE,MN
11、的解析式为y=5x+b,点N在抛物线对称轴x=2上,N(2,10+b),AE2=OA2+0E2=26MN=AEMN2=AE2,MN2=(21)2+8(10+b)2=1+(b+2)2M点的坐标为M1(1,8)或M2(3,8),点M1,M2关于抛物线对称轴x=2对称,点N在抛物线对称轴上,M1N=M2N,1+(b+2)2=26,b=3,或b=7,10+b=13或10+b=3当M点的坐标为(1,8)时,N点坐标为(2,13),当M点的坐标为(3,8)时,N点坐标为(2,3),【点评】此题是二次函数综合题,主要考查了待定系数法求函数关系式,函数极值额确定方法,平行四边形的性质和判定,解本题的关键是建立
12、函数关系式求极值类型四 特殊四边形的存在问题5.(2017烟台25题(13分)如图1,抛物线y=ax2+bx+2与x轴交于A,B两点,与y轴交于点C,AB=4,矩形OBDC的边CD=1,延长DC交抛物线于点E(1)求抛物线的解析式;(2)如图2,点P是直线EO上方抛物线上的一个动点,过点P作y轴的平行线交直线EO于点G,作PHEO,垂足为H设PH的长为l,点P的横坐标为m,求l与m的函数关系式(不必写出m的取值范围),并求出l的最大值;(3)如果点N是抛物线对称轴上的一点,抛物线上是否存在点M,使得以M,A,C,N为顶点的四边形是平行四边形?若存在,直接写出所有满足条件的点M的坐标;若不存在,
13、请说明理由【分析】(1)由条件可求得A、B的坐标,利用待定系数法可求得抛物线解析式;(2)可先求得E点坐标,从而可求得直线OE解析式,可知PGH=45,用m可表示出PG的长,从而可表示出l的长,再利用二次函数的性质可求得其最大值;(3)分AC为边和AC为对角线,当AC为边时,过M作对称轴的垂线,垂足为F,则可证得MFNAOC,可求得M到对称轴的距离,从而可求得M点的横坐标,可求得M点的坐标;当AC为对角线时,设AC的中点为K,可求得K的横坐标,从而可求得M的横坐标,代入抛物线解析式可求得M点坐标【解答】解:(1)矩形OBDC的边CD=1,OB=1,AB=4,OA=3,A(3,0),B(1,0)
14、,把A、B两点坐标代入抛物线解析式可得,解得,抛物线解析式为y=x2x+2;(2)在y=x2x+2中,令y=2可得2=x2x+2,解得x=0或x=2,E(2,2),直线OE解析式为y=x,由题意可得P(m,m2m+2),PGy轴,G(m,m),P在直线OE的上方,PG=m2m+2(m)=m2m+2=(m+)2+,直线OE解析式为y=x,PGH=COE=45,l=PG=(m+)2+=(m+)2+,当m=时,l有最大值,最大值为;(3)当AC为平行四边形的边时,则有MNAC,且MN=AC,如图,过M作对称轴的垂线,垂足为F,设AC交对称轴于点L,则ALF=ACO=FNM,在MFN和AOC中MFNA
15、OC(AAS),MF=AO=3,点M到对称轴的距离为3,又y=x2x+2,抛物线对称轴为x=1,设M点坐标为(x,y),则|x+1|=3,解得x=2或x=4,当x=2时,y=,当x=4时,y=,M点坐标为(2,)或(4,);当AC为对角线时,设AC的中点为K,A(3,0),C(0,2),K(,1),点N在对称轴上,点N的横坐标为1,设M点横坐标为x,x+(1)=2()=3,解得x=2,此时y=2,M(2,2);综上可知点M的坐标为(2,)或(4,)或(2,2)【点评】本题为二次函数的综合应用,涉及待定系数法、二次函数的性质、等腰直角三角形的性质、全等三角形的判定和性质、平行四边形的判定和性质、
16、方程思想及分类讨论思想等知识在(1)中求得A、B的坐标是解题的关键,在(2)中确定出PG与l的关系是解题的关键,在(3)中确定出M的位置是解题的关键本题考查知识点较多,综合性较强,难度适中6、(2017年威海25题)如图,已知抛物线y=ax2+bx+c过点A(1,0),B(3,0),C(0,3)点M、N为抛物线上的动点,过点M作MDy轴,交直线BC于点D,交x轴于点E(1)求二次函数y=ax2+bx+c的表达式;(2)过点N作NFx轴,垂足为点F,若四边形MNFE为正方形(此处限定点M在对称轴的右侧),求该正方形的面积;(3)若DMN=90,MD=MN,求点M的横坐标【分析】(1)待定系数法求
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 2018 年中 复习 二次 函数 综合 应用 27
限制150内