等差等比数列综合问题.docx
《等差等比数列综合问题.docx》由会员分享,可在线阅读,更多相关《等差等比数列综合问题.docx(20页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、等差等比数列综合问题等差数列与等比数列综合问题(3) 等差数列与等比数列综合问题(3) 教学目标 1.娴熟运用等差、等比数列的概念、通项公式、前n项和式以及有关性质,分析和解决等差、等比数列的综合问题 2.突出方程思想的应用,引导学生选择简捷合理的运算途径,提高运算速度和运算实力 3.用类比思想加深对等差数列与等比数列概念和性质的理解. 教学重点与难点 1.用方程的观点相识等差、等比数列的基础学问,从本质上驾驭公式 2.等差数列与等比数列的综合应用. 例1已知两个等差数列5,8,11,和3,7,11都有100项,问它们有多少公共项. 例2已知数列an的前n项和,求数列|an|的前n项和Tn.
2、例3已知公差不为零的等差数列an和等比数例bn中,a1b11,a2b2,a8b3,试问:是否存在常数a,b,使得对于一切自然数n,都有anlogabn+b成立若存在,求出a,b的值,若不存在,请说明理由 例4已知数列an是公差不为零的等差数列,数列akn是公比为q的等比数列,且k11,k25,k317,求k1+k2+k3+kn的值 例5、已知函数f(x)=2x-2-x,数列an满意f()=-2n(1)求an的通项公式。(2)证明an是递减数列。例6、在数列an中,an0,=an+1(nN)求Sn和an的表达式。例7.已知数列an的通项公式为an=. 求证:对于随意的正整数n,均有a2n1,a2
3、n,a2n+1成等比数列,而a2n,a2n+1,a2n+2成等差数列。 例8项数为奇数的等差数列,奇数项之和为44,偶数项之和为33,求该数列的中间项及项数。 作业 1公差不为零的等差数列的第2,第3,第6项依次成等比数列,则公比是() (A)1(B)2(C)3(D)4 2若等差数列an的首项为a11,等比数列bn,把这两个数列对应项相加所得的新数列an+bn的前三项为3,12,33,则an的公差为bn的公比之和为() (A)5(B)7(C)9(D)14 3已知等差数列an的公差d0,且a1,a3,a9成等比数列,则的值是 4在等差数列an中,a1,a4,a25依次成等比数列,且a1+a4+a
4、25114,求成等比数列的这三个数 5设数列an是首项为1的等差数列,数列bn是首项为1的等比数列,又Cnanbn(nN+),已知试求数列Cn的通项公式与前n项和公式 等差数列与等比数列 等差数列与等比数列 【复习目标】驾驭等差、等比数列的定义及通项公式,前n项和公式以及等差、等比数列的性质,在解决有关等差,等比数列问题时,要留意运用方程的思想和函数思想以及整体的观点,培育分析问题与解决问题的实力。【课前热身】1假如,为各项都大于零的等差数列,公差,则()ABC+D=2已知9,a1,a2,1这四个数成等差数列,9,b1,b2,b3,1这5个数成等比数列,则等于()A-8B8C8或-8D3设Sn
5、是等差数列的前n项和,若()(福建文)A1B1C2D4已知等差数列的公差为2,若成等比数列,则=()(浙江文理)A4B6C8D105.(2022年杭州二模题)已知成等差数列,成等比数列,则椭圆的准线方程为_.【例题探究】1、已知数列为等差数列,且(05湖南)()求数列的通项公式;()证明 2、设数列记()求a2,a3;()推断数列是否为等比数列,并证明你的结论; 3、某企业进行技术改造,有两种方案,甲方案:一次性贷款10万元,第一年便可获利1万元,以后每年比前一年增加30%的利润;乙方案:每年贷款1万元,第一年可获利1万元,以后每年比前一年增加5千元;两种方案的运用期都是10年,到期一次性归还
6、本息.若银行两种形式的贷款都按年息5%的复利计算,试比较两种方案中,哪种获利更多?(取)【方法点拨】1本题的关键在于指数式和对数式的互化在数列中的应用。2数列通项公式和递推公式常常在已知条件中给出,利用列举、叠加、叠乘等方法求之.求通项公式的方法应驾驭.3例3是比较简洁的数列应用问题,由于问题所涉及的数列是熟识的等比数列与等差数列,因此只建立通项公式并运用所学过的公式求解.冲刺强化训练(12)1已知等差数列满意则有()A.B.C.D.2在正数等比数列中已知则()A11B10C8D43设数列是等差数列,且,是数列的前项和,则()ABCD4在各项都为正数的等比数列中首项,前三项和为21,则()A3
7、3B72C84D1895设数列的前项和为().关于数列有下列三个命题:(1)若既是等差数列又是等比数列,则;(2)若,则是等差数列;(3)若,则是等比数列.这些命题中,真命题的序号是. 6、在等差数列中,等比数列中,则 7设F是椭圆的右焦点,且椭圆上至少有21个不同的点Pi(i=1,2,3,),使|FP1|,|FP2|,|FP3|,组成公差为d的等差数列,则d的取值范围为(湖南理) 8已知,都是各项为正数的数列,对随意的正整n,都有成等差数列,等比数列。(1)求证:是等差数列;(2)假如,。 9设C1,C2,Cn是圆心在抛物线上的一系列圆,它们的圆心的横坐标分别记为。已知,。若Ck(k=1,2
8、,3,n)都与x轴相切,且顺次两圆外切。(1)求证:是等差数列(2)求的表达式;(3)求证:参考答案【课前热身】1B2,A3,A4,B5、y=22.解析:由条件易知m=2,n=4.但要留意椭圆焦点所在的坐标轴是y轴.因此准线方程为y=a2c=22.【例题探究】1,(I)解:设等差数列的公差为d.由即d=1.所以即(II)证明因为,所以2,解:(I)(II)因为,所以所以猜想:是公比为的等比数列.证明如下:因为所以是首项为,公比为的等比数列.3,解:甲方案是等比数列,乙方案是等差数列,甲方案获利:(万元)银行贷款本息:(万元)故甲方案纯利:(万元)乙方案获利:(万元);银行本息和:(万元)故乙方
9、案纯利:(万元);综上,甲方案更好. 冲刺强化训练(12)1C2A3B4C5(1)、(2)、(3)6解:点评:此题也可以把和d看成两个未知数,通过列方程,联立解之d=。再求出但计算较繁,运用计算较为便利。78解:(1)证明:成等差数列,。成等比数列,即,成等差数列。(2)解:而,)9解:(1)由题意知:,:,,两边平方,整理得是以为首项,公差为2的等差数列(2)由(1)知,(3), 等比数列学案 第3课时等比数列的前n项和知能目标解读1.驾驭等比数列的前n项和公式的推导方法-错位相减法,并能用其思想方法求某类特别数列的前n项和.2.驾驭等比数列前n项和公式以及性质,并能应用公式解决有关等比数列
10、前n项的问题.在应用时,特殊要留意q=1和q1这两种状况.3.能够利用等比数列的前n项和公式解决有关的实际应用问题.重点难点点拨重点:驾驭等比数列的求和公式,会用等比数列前n项和公式解决有关问题.难点:探讨等比数列的结构特点,推导等比数列的前n项和的公式及公式的敏捷运用.学习方法指导1.等比数列的前n项和公式(1)设等比数列an,其首项为a1,公比为q,则其前n项和公式为na1(q=1)Sn=.(q1)也就是说,公比为q的等比数列的前n项和公式是q的分段函数的一系列函数值,分段的界限是在q=1处.因此,运用等比数列的前n项和公式,必需要弄清公比q是可能等于1还是不等于1,假如q可能等于1,则需
11、分q=1和q1进行探讨.(2)等比数列an中,当已知a1,q(q1),n时,用公式Sn=,当已知a1,q(q1),an时,用公式Sn=.2.等比数列前n项和公式的推导除课本上用错位相减法推导求和公式外,还可以用下面的方法推导.(1)合比定理法由等比数列的定义知:=q.当q1时,=q,即=q.故Sn=.当q=1时,Sn=na1.(2)拆项法Sn=a1+a1q+a1q2+a1qn-1=a1+q(a1+a1q+a1qn-2)=a1+qSn-1=a1+q(Sn-an)当q1时,Sn=.当q=1时,Sn=na1.(3)利用关系式Sn-Sn-1=an(n2)当n2时,Sn=a1+a2+a3+an=a1+q
12、(a1+a2+an-1)=a1+qSn-1Sn=a1+q(Sn-an)即(1-q)Sn=a1(1-qn)当q1时,有Sn=,当q=1时,Sn=na1.留意:(1)错位相减法,合比定理法,拆项法及an与Sn的关系的应用,在今后解题中要时常用到,要领悟这些技巧.(2)错位相减法适用于an为等差数列,bn为等比数列,求anbn的前n项和.3.等比数列前n项和公式的应用(1)衡量等比数列的量共有五个:a1,q,n,an,Sn.由方程组学问可知,解决等比数列问题时,这五个量中只要已知其中的任何三个,就可以求出其他两个量.(2)公比q是否为1是考虑等比数列问题的重要因素,在求和时,留意分q=1和q1的探讨
13、.4.等比数列前n项和公式与函数的关系(1)当公比q1时,令A=,则等比数列的前n项和公式可写成Sn=-Aqn+A的形式.由此可见,特别数列的等比数列的前n项和Sn是由关于n的一个指数式与一个常数的和构成的,而指数式的系数与常数项互为相反数.当公比q=1时,因为a10,所以Sn=na1是n的正比例函数(常数项为0的一次函数).(2)当q1时,数列S1,S2,S3,Sn,的图像是函数y=-Aqx+A图像上的一群孤立的点.当q=1时,数列S1,S2,S3,Sn,的图像是正比例函数y=a1x图像上的一群孤立的点.知能自主梳理1.等比数列前n项和公式(1)等比数列an的前n项和为Sn,当公比q1时,S
14、n=;当q=1时,Sn=.(2)推导等比数列前n项和公式的方法是.2.公式特点(1)若数列an的前n项和Sn=p(1-qn)(p为常数),且q0,q1,则数列an为.(2)在等比数列的前n项和公式中共有a1,an,n,q,Sn五个量,在这五个量中知求.答案1.(1)na1(2)错位相减法2.(1)等比数列(2)三二思路方法技巧命题方向等比数列前n项和公式的应用例1设数列an是等比数列,其前n项和为Sn,且S3=3a3,求此数列的公比q.分析应用等比数列前n项和公式时,留意对公比q的探讨.解析当q=1时,S3=3a1=3a3,符合题目条件;当q1时,=3a1q2,因为a10,所以1q3=3q2(
15、1-q),2q3-3q2+1=0,(q-1)2(2q+1)=0,解得q=-.综上所述,公比q的值是1或.说明(1)在等比数列中,对于a1,an,q,n,Sn五个量,已知其中三个量,可以求得其余两个量.(2)等比数列前n项和问题,必需留意q是否等于1,假如不确定,应分q=1或q1两种状况探讨.(3)等比数列前n项和公式中,当q1时,若已知a1,q,n利用Sn=来求;若已知a1,an,q,利用Sn=来求.变式应用1在等比数列an中,已知S3=,S6=,求an.解析S6=,S3=,S62S3,q1.=得1+q3=9,q=2.将q=2代入,得a1=,an=a1qn-1=2n-2.命题方向等比数列前n项
16、的性质例2在等比数列an中,已知Sn=48,S2n=60,求S3n.分析利用等比数列前n项的性质求解.解析an为等比数列,Sn,S2n-Sn,S3n-S2n也成等比数列,(S2n-Sn)2=Sn(S3n-S2n)S3n=+S2n=+60=63.说明等比数列连续等段的和若不为零时,则连续等段的和仍成等比数列.变式应用2等比数列an中,S2=7,S6=91,求S4.解析解法一:an为等比数列,S2,S4-S2,S6-S4也为等比数列,(S4-7)2=7(91-S4),解得S4=28或-21.S4=a1+a2+a3+a4=a1+a2+a1q2+a2q2=S2+S2q2=S2(1+q2)0,S4=28
17、.解法二:S2=7,S6=91,q1.=7?=91得q4+q2-12=0,q2=3,q=.当q=时,a1=,S4=28.当q=-时,a1=-,S4=28.探究延拓创新命题方向等比数列前n项和在实际问题中的应用例3某公司实行股份制,一投资人年初入股a万元,年利率为25%,由于某种须要,从其次年起此投资人每年年初要从公司取出x万元.(1)分别写出第一年年底,其次年年底,第三年年底此投资人在该公司中的资产本利和;(2)写出第n年年底,此投资人的本利之和bn与n的关系式(不必证明);(3)为实现第20年年底此投资人的本利和对于原始投资a万元恰好翻两番的目标,若a=395,则x的值应为多少?(在计算中可
18、运用lg20.3)解析(1)第一年年底本利和为a+a25%=1.25a,其次年年底本利和为(1.25a-x)+(1.25a-x)25%=1.252a-1.25x,第三年年底本利和为(1.252a-1.25x-x)+(1.252a-1.25x-x)25%=1.253a-(1.252+1.25)x.(2)第n年年底本利和为bn=1.25na-(1.25n-1+1.25n-2+1.25)x.(3)依题意,有3951.2520-(1.2519+1.2518+1.25)x=4395,x=.设1.2520=t,lgt=20lg()=20(1-3lg2)=2.t=100,代入解得x=96.变式应用3某高校张
19、教授年初向银行贷款2万元用于购房,银行货款的年利息为10,按复利计算(即本年的利息计入次年的本金生息).若这笔款要分10年等额还清,每年年初还一次,并且以贷款后次年年初起先归还,问每年应还多少元?解析第1次还款x元之后到第2次还款之日欠银行20000(110)x=200001.1x,第2次还款x元后到第3次还款之日欠银行20000(1+10%)-x(1+10%)-x=200001.12-1.1x-x,第10次还款x元后,还欠银行200001.1101.19x-1.18x-x,依题意得,第10次还款后,欠款全部还清,故可得200001.110(1.191.181)x=0,解得x=3255(元).
20、名师辨误做答例4求数列1,a+a2,a3+a4+a5,a6+a7+a8+a9,的前n项和.误会所求数列的前n项和Sn=1+a+a2+a3+a=.辨析所给数列除首项外,每一项都与a有关,而条件中没有a的范围,故应对a进行探讨.正解由于所给数列是在数列1,a,a2,a3,中依次取出1项,2项,3项,4项,的和所组成的数列.因而所求数列的前n项和中共含有原数列的前(1+2+n)项.所以Sn=1+a+a2+a.当a=0时,Sn=1.当a=1时,Sn=.当a0且a1时,Sn=.课堂巩固训练一、选择题1.等比数列an的公比q=2,前n项和为Sn,则=()A.2B.4C.D.?答案C解析由题意得=.故选C.
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 等差 等比数列 综合 问题
限制150内