平面直角坐标系找规律题型解析.docx
《平面直角坐标系找规律题型解析.docx》由会员分享,可在线阅读,更多相关《平面直角坐标系找规律题型解析.docx(24页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、平面直角坐标系找规律题型解析平面直角坐标系找规律题型解析 1、如图,正方形ABCD的顶点分别为A(1,1) B(1,-1) C(-1,-1) D(-1,1),y轴上有一点P(0,2)。作点P关于点A的对称点p1,作p1关于点B的对称点p2,作点p2关于点C的对称点p3,作p3关于点D的对称点p4,作点p4关于点A的对称点p5,作p5关于点B的对称点p6,按如此操作下去,则点p2011的坐标是多少? 解法1:对称点P1、P2、P3、P4每4个点,图形为一个循环周期。设每个周期均由点P1,P2,P3,P4组成。第1周期点的坐标为:P1(2,0),P2(0,-2),P3(-2,0),P4(0,2)
2、第2周期点的坐标为:P1(2,0),P2(0,-2),P3(-2,0),P4(0,2) 第3周期点的坐标为:P1(2,0),P2(0,-2),P3(-2,0),P4(0,2) 第n周期点的坐标为:P1(2,0),P2(0,-2),P3(-2,0),P4(0,2) 20114=5023,所以点P2011的坐标与P3坐标相同,为(2,0) 解法2:依据题意,P1(2,0) P2(0,2) P3(2,0) P4(0,2)。依据p1-pn每四个一循环的规律,可以得出: P4n(0,2),P4n+1(2,0),P4n+2(0,2),P4n+3(2,0)。20114=5023,所以点P2011的坐标与P3
3、坐标相同,为(2,0) 总结:此题是循环问题,关键是找出每几个一循环,及循环的起始点。此题是每四个点一循环,起始点是p点。2、在平面直角坐标系中,一蚂蚁从原点O动身,按向上、向右、向下、向右的方向依次不断移动O 1 A1 A2 A3 A4 A5 A6 A7 A8 A9 A10 A11 A12 x y ,每次移动1个单位其行走路途如下图所示 (1)填写下列各点的坐标:A4( , ),A8( , ),A10( , ),A12( ); (2)写出点A4n的坐标(n是正整数); (3)按此移动规律,若点Am在x轴上,请用含n的代数式表示m(n是正整数) (4)指出蚂蚁从点A2011到点A2012的移动
4、方向 (5)指出蚂蚁从点A100到点A101的移动方向(6)指出A106,A201的的坐标及方向。解法:(1)由图可知,A4,A12,A8都在x轴上, 小蚂蚁每次移动1个单位, OA4=2,OA8=4,OA12=6, A4(2,0),A8(4,0),A12(6,0);同理可得出:A10(5,1) (2)依据(1)OA4n=4n2=2n,点A4n的坐标(2n,0); (3)只有下标为4的倍数或比4n小1的数在x轴上, 点Am在x轴上,用含n的代数式表示为:m=4n或m=4n-1; (4)20114=5023, 从点A2011到点A2012的移动方向与从点A3到A4的方向一样,为向右 (5)点A1
5、00中的n正好是4的倍数,所以点A100和A101的坐标分别是A100(50,0)和A101(50,1),所以蚂蚁从点A100到A101的移动方向是从下向上。(6)方法1:点A1、A2、A3、A4每4个点,图形为一个循环周期。设每个周期均由点A1,A2,A3,A4组成。第1周期点的坐标为:A1(0,1), A2(1,1), A3(1,0), A4(2,0) 第2周期点的坐标为:A1(2,1), A2(3,1), A3(3,0), A4(4,0) 第3周期点的坐标为:A1(4,1), A2(5,1), A3(5,0), A4(6,0) 第n周期点的坐标为:A1(2n-2,1),A2(2n-1,1
6、),A3(2n-1,0),A4(2n,0) 1064=262,所以点A106坐标与第27周期点A2坐标相同,(227-1,1),即(53,1)方向朝下。 2014=501,所以点A201坐标与第51周期点A1坐标相同,(251-2,1),即(100,1)方向朝右。 方法2:由图示可知,在x轴上的点A的下标为奇数时,箭头朝下,下标为偶数时,箭头朝上。106=104+2,即点A104再移动两个单位后到达点A106,A104的坐标为(52,0)且移动的方向朝上,所以A106的坐标为(53,1),方向朝下。同理:201=200+1,即点A200再移动一个单位后到达点A201,A200的坐标为(100,
7、0)且移动的方向朝上,所以A201的坐标为(100,1),方向朝右。3、一只跳蚤在第一象限及x轴、y轴上跳动,在第一秒钟,它从原点跳动到(0,1),然后接着按图中箭头所示方向跳动即(0,0)(0,1) (1,1) (1,0),且每秒跳动一个单位,那么第35秒时跳蚤所在位置的坐标是多少?第42、49、2011秒所在点的坐标及方向? 解法1:到达(1,1)点须要2秒 到达(2,2)点须要2+4秒 到达(3,3)点须要2+4+6秒 到达(n,n)点须要2+4+6+.+2n秒n(n+1)秒 当横坐标为奇数时,箭头朝下,再指向右,当横坐标为偶数时,箭头朝上,再指向左。35=56+5,所以第5*6=30秒
8、在(5,5)处,此后要指向下方,再过5秒正好到(5,0) 即第35秒在(5,0)处,方向向右。42=67,所以第67=42秒在(6,6)处,方向向左 49=67+7,所以第67=42秒在(6,6)处,再向左移动6秒,向上移动一秒到(0,7) 即第49秒在(0,7)处,方向向右 解法2:依据图形可以找到如下规律,当n为奇数是n2秒处在(0,n)处,且方向指向右; 当n为偶数时n2秒处在(n,0)处,且方向指向上。35=62-1,即点(6,0)倒退一秒到达所得点的坐标为(5,0),即第35秒处的坐标为(5,0)方向向右。用同样的方法可以得到第42、49、2011处的坐标及方向。4、如图,全部正方形
9、的中心均在坐标原点,且各边与x轴或y轴平行从内到外,它们的边长依次为2,4,6,8,顶点依次用A1,A2,A3,A4,表示,顶点A55的坐标是() 解法1:视察图象,每四个点一圈进行循环,依据点的脚标与坐标找寻规律。视察图象,点A1、A2、A3、A4每4个点,图形为一个循环周期。设每个周期均由点A1,A2,A3,A4组成。第1周期点的坐标为:A1(-1,-1), A2(-1,1), A3(1,1), A4(1,-1) 第2周期点的坐标为:A1(-2,-2), A2(-2,2), A3(2,2), A4(2,-2) 第3周期点的坐标为:A1(-3,-3), A2(-3,3), A3(3,3),
10、A4(3,-3) 第n周期点的坐标为:A1(-n,-n), A2(-n,n), A3(n,n), A4(n,-n) 554=133,A55坐标与第14周期点A3坐标相同,(14,14),在同一象限 解法2:55=413+3,A55与A3在同一象限,即都在第一象限, 依据题中图形中的规律可得: 3=41-1,A3的坐标为(1,1), 7=42-1,A7的坐标为(2,2), 11=43-1,A11的坐标为(3,3); 55=414-1,A55(14,14) 5、在平面直角坐标系中,对于平面内任一点(m,n),规定以下两种变换: (1)f(m,n)=(m,n),如f(2,1)=(2,1); (2)g
11、(m,n)=(m,n),如g(2,1)=(2,1) 根据以上变换有:fg(3,4)=f(3,4)=(3,4),那么gf(3,2)等于() 解:f(3,2)=(3,2),gf(3,2)=g(3,2)=(3,2), 6、在平面直角坐标系中,对于平面内任一点(a,b),若规定以下三种变换: 1、f(a,b)=(a,b)如:f(1,3)=(1,3); 2、g(a,b)=(b,a)如:g(1,3)=(3,1); 3、h(a,b)=(a,b)如:h(1,3)=(1,3) 根据以上变换有:f(g(2,3)=f(-3,2)=(3,2),那么f(h(5,-3)等于()(5,3) 7、一质点P从距原点1个单位的M
12、点处向原点方向跳动,第一次跳动到OM的中点M3处,其次次从M3跳到OM3的中点M2处,第三次从点M2跳到OM2的中点M1处,如此不断跳动下去,则第n次跳动后,该质点到原点O的距离为() 解:由于OM=1, 全部第一次跳动到OM的中点M3处时,OM3=OM=,同理其次次从M3点跳动到M2处,即在离原点的2处,同理跳动n次后,即跳到了离原点的处 8、如图,在平面直角坐标系中,有若干个横坐标分别为整数的点,其依次按图中“”方向排列,如(1,0),(2,0),(2,1),(1,1),(1,2),(2,2)依据这个规律,第2012个点的横坐标为( )45 解:依据图形,以最外边的矩形边长上的点为准,点的
13、总个数等于x轴上横坐标的平方, 例如:右下角的点的横坐标为1,共有1个,1=12, 右下角的点的横坐标为2时,共有4个,4=22, 右下角的点的横坐标为3时,共有9个,9=32, 右下角的点的横坐标为4时,共有16个,16=42, 右下角的点的横坐标为n时,共有n2个, 452=2025,45是奇数,第2025个点是(45,0),第2012个点是(45,13), 9、(2007遂宁)如图,在平面直角坐标系中,有若干个整数点,其依次按图中“”方向排列,如(1,0),(2,0),(2,1),(3,2),(3,1),(3,0)依据这个规律探究可得,第88个点的坐标为( ) 解:由图形可知:点的横坐标
14、是偶数时,箭头朝上,点的横坐标是奇数时,箭头朝下。坐标系中的点有规律的按列排列,第1列有1个点,第2列有2个点,第3列有3个点第n列有n个点。1+2+3+4+12=78,第78个点在第12列上,箭头常上。88=78+10,从第78个点起先再经过10个点,就是第88个点的坐标在第13列上,坐标为(13,13-10),即第88个点的坐标是(13,3) 10、如图,已知Al(1,0),A2(1,1),A3(1,1),A4(1,1),A5(2,1),则点A2007的坐标为( ) 解法1:视察图象,点A1、A2、A3、A4每4个点,图形为一个循环周期。设每个周期均由点A1,A2,A3,A4组成。第1周期
15、点的坐标为:A1(1,0), A2(1,1), A3(-1,1), A4(-1,-1) 第2周期点的坐标为:A1(2,-1), A2(2,2), A3(-2,2), A4(-2,-2) 第3周期点的坐标为:A1(3,-2), A2(3,3), A3(-3,3), A4(-3,-3) 第n周期点的坐标为:A1(n,-(n-1), A2(n,n), A3(-n,n), A4(-n,-n) 因为20074=5013,所以A2007的坐标与第502周期的点A3的坐标相同,即(-502,502) 解法2:由图形以可知各个点(除A1点和第四象限内的点外)都位于象限的角平分线上, 位于第一象限点的坐标依次为
16、A2(1,1) A6(2,2) A10(3,3)A4n2(n,n)。因为第一象限角平分线的点对应的字母的下标是2,6,10,14,即4n2(n是自然数,n是点的横坐标的肯定值); 同理其次象限内点的下标是4n1(n是自然数,n是点的横坐标的肯定值); 第三象限是4n(n是自然数,n是点的横坐标的肯定值); 第四象限是1+4n(n是自然数,n是点的横坐标的肯定值); 因为20074=5013,所以A2007位于其次象限。2007=4n1则n=502, 故点A2007在其次象限的角平分线上,即坐标为(502,502) 11、如图,一个机器人从O点动身,向正东方向走3米到达A1点,再向正北方向走6米
17、到达A2点,再向正西方向走9米到达A3点,再向正南方向走12米到达A4点,再向正东方向走15米到达A5点、按如此规律走下去,当机器人走到A6,A108点D的坐标各是多少。 解法1:视察图象,点A1、A2、A3、A4每4个点,图形为一个循环周期。 设每个周期均由点A1,A2,A3,A4组成。第1周期点的坐标为:A1(3,0), A2(3,6), A3(-6,6), A4(-6,-6) 第2周期点的坐标为:A1(9,-6), A2(9,12), A3(-12,12), A4(-12,-12) 第3周期点的坐标为:A1(15,-12), A2(15,18), A3(-18,18), A4(-18,-
18、18) 第n周期点的坐标为:A1(6n-3,-(6n-6),A2(6n-3,6n), A3(-6n,6n), A4(-6n,-6n) 因为64=12,所以A6的坐标,与第2周期的点A2的坐标相同,即(9,12) 因为1084=27,所以A108的坐标与第27周期的点A4的坐标相同,(-627, -627) 解法2:依据题意可知,A1A2=3,A2A3=6,A3A4=8,A4A5=15,当机器人走到A6点时,A5A6=18米,点A6的坐标是(9,12); 12、(2013兰州)如图,在直角坐标系中,已知点A(3,0)、B(0,4),对OAB连续作旋转变换,依次得到1、2、3、4,则2013的直角
19、顶点的坐标为( ) 解:点A(3,0)、B(0,4),AB=5, 由图可知,每三个三角形为一个循环组依次循环,一个循环组前进的长度为:4+5+3=12, 20133=671,2013的直角顶点是第671个循环组的最终一个三角形的直角顶点, 67112=8052,2013的直角顶点的坐标为(8052,0) 12(2013聊城)如图,在平面直角坐标系中,一动点从原点O动身,按向上,向右,向下,向右的方向不断地移动,每移动一个单位,得到点A1(0,1),A2(1,1),A3(1,0),A4(2,0),那么点A4n+1(n为自然数)的坐标为( ) 解:由图可知,n=1时,41+1=5,点A5(2,1)
20、, n=2时,42+1=9,点A9(4,1), n=3时,43+1=13,点A13(6,1),所以,点A4n+1(2n,1) 13(2013湛江)如图,全部正三角形的一边平行于x轴,一顶点在y轴上从内到外,它们的边长依次为2,4,6,8,顶点依次用A1、A2、A3、A4表示,其中A1A2与x轴、底边A1A2与A4A5、A4A5与A7A8、均相距一个单位,求点A3和 A92的坐标分别是多少, 解法1:视察图象,点A1、A2、A3、每3个点,图形为一个循环周期。依据计算A3的坐标是(0,1) 设每个周期均由点A1,A2,A3,组成。第1周期点的坐标为:A1(-1,-1), A2(1,-1), A3
21、(0, 1) 第2周期点的坐标为:A1(-2,-2), A2(2,-2), A3(0, ) 第3周期点的坐标为:A1(-3,-3), A2(3,-3), A3(0, +1) 第n周期点的坐标为:A1(-n,-n), A2(n,-n), A3(0, +n-2), 因为33=1,所以A3的坐标与第1周期的点A3的坐标相同,即(0, 1) 因为923=302,所以A92的坐标与第31周期的点A2的坐标相同,即(31, -31) 解法2:A1A2A3的边长为2, A1A2A3的高线为2=, A1A2与x轴相距1个单位, A3O=1, A3的坐标是(0,1); 923=302, A92是第31个等边三角
22、形的初中第四象限的顶点, 第31个等边三角形边长为231=62, 点A92的横坐标为62=31,边A1A2与A4A5、A4A5与A7A8、均相距一个单位, 点A92的纵坐标为31,点A92的坐标为(31,31) 14、如图是某同学在课外设计的一款软件,蓝精灵从O点第一跳落到A1(1,0),其次跳落到A2(1,2),第三跳落到A3(4,2),第四跳落到A4(4,6),第五跳落到A5_到达A2n后,要向_方向跳_个单位落到A2n+1 解:蓝精灵从O点第一跳落到A1(1,0),其次跳落到A2(1,2),第三跳落到A3(4,2),第四跳落到A4(4,6), 蓝精灵先向右跳动,再向上跳动,每次跳动距离为
23、次数+1,即可得出: 第五跳落到A5(9,6),到达A2n后,要向右方向跳(2n+1)个单位落到A2n+1 17(2012莱芜)将正方形ABCD的各边按如图所示延长,从射线AB起先,分别在各射线上标记点A1、A2、A3、,按此规律,点A2012在那条射线上 解:如图所示: 点名称射线名称 AB A1 A3 A10 A12 A17 A19 A26 A28 CD A2 A4 A9 A11 A18 A20 A25 A27 BC A5 A7 A14 A16 A21 A23 A30 A32 DA A6 A8 A13 A15 A22 A24 A29 A31 依据表格中点的排列规律,可以得到点的坐标是每16
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 平面 直角 坐标系 规律 题型 解析
限制150内