有效油-水分离的水-响应膜Hygro-responsive membranes for effective oil–water separation.docx
《有效油-水分离的水-响应膜Hygro-responsive membranes for effective oil–water separation.docx》由会员分享,可在线阅读,更多相关《有效油-水分离的水-响应膜Hygro-responsive membranes for effective oil–water separation.docx(42页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、Hygro-responsive membranes for effective oil-water separation 有效油水别离的水响应膜Kota, A. K. et al. Nat. Commun. 3:1025 doi: 10.1038/2027 (2012).There is a critical need for new energy-efficient solutions to separate oil-water mixtures, especially those stabilized by surfactants. Traditional membrane-based
2、separation technologies are energy-intensive and limited, either by fouling or by the inability of a single membrane to separate all types of oil-water mixtures. Here we report membranes with hygro-responsive surfaces, which are both superhydrophilic and superoleophobic, in air and under water. Our
3、membranes can separate, for the first time, a range of different oil-water mixtures in a single-unit operation, with 99.9% separation efficiency, by using the difference in capillary forces acting on the two phases. Our separation methodology is solely gravity-driven and consequently is expected to
4、be highly energy-efficient. We anticipate that our separation methodology will have numerous applications, including the clean-up of oil spills, wastewater treatment, fuel purification and the separation of commercially relevant emulsions.迫切需要新的别离油-水混合物的节能解决方案,尤其由外表活性剂稳定的混合物。传 统膜-基别离技术是能源一密集型,且受到污染或
5、单一膜无法别离所有类型油一水混合物的 限制。这里报告了空气和水下超亲水和超疏油外表的水-响应外表膜。首次采用作用于两相 互的毛细管力差,我们的膜可在一个单元操作中别离一系列不同的油水混合物,别离效率 99.9%o别离方法完全为重力驱动,因此,预计会非常节能。预计我们的别离方法将有许 很多应用,包括石油泄漏清理、废水处理、燃料净化和相关商业乳化的别离。Recent events including the Deepwater Horizon oil spill in the Gulf of Mexico have highlighted the difficulty of effective o
6、il-water separation. Efficient, cost-effective processes for oil-water separation, especially in the presence of dispersants (or surfactants), are greatly desired 1. Surfactant-stabilized mixtures of oil and water are classified?, in terms of the diameter (d) of the dispersed phase, as free oil and
7、water if d 150(im9 a dispersion if 20(im d 150or an emulsion if d 20 pim. Conventional gravity separators and skimming techniques are incapable of separating emulsions2. Membrane-based technologies are attractive for demulsification (the conversion of an emulsion to a free oil-water mixture) because
8、 they are relatively energy-efficient, cost-effective, and are applicable across a wide range of industrial=2R%21 cos(,)breakthrough- j 2(R/D)sin ).Here 712 is the interfacial tension between the wetting phase and the non-wetting phase, and 0 is the contact angle of the non-wetting phase on the soli
9、d surface, both of which are completely immersed in the wetting phase.这里Y12是润湿相和非润湿相之间的界面张力,。是固体外表上的非-润湿相接触角, 二者都完全浸没在润湿相中。When pressure Pappiied Pbreakthrough is applied, only the wetting phase permeates through the membrane. We use CFS in this work because it combines both demulsification and sepa
10、ration into a single-unit operation, it provides a very high-quality permeate and it is inherently self-repairing34. For a CFS-based system to work effectively, it is necessary that the wetting phase contact the membrane. There are several techniques to achieve this goal: gravity-driven (if the wett
11、ing phase has a higher density than the non-wetting phase), electrostatic (if the wetting phase is a polar liquid)36, forced convection3,6,7, etc. In this work, we demonstrate a proof-of-concept prototype that solely utilizes gravity to engender separation of various oilwater mixtures.当Pappiied 99%
12、efficiency, hexadecane-in-water emulsions containing 10 vol% and 30 vol% hexadecane. We also conducted experiments with hexadecane-in-water emulsions containing salt (sodium chloride). As with the non-saline emulsions, we could separate saline emulsions with 99% efficiency.图3a、b显示SDS (亲水-亲油平衡,HLB=40
13、)稳定的水包十六烷油乳化(50 vol% 十六烷;方法)的只是中重力-驱动CFS。十六烷液滴尺寸分布(见补充图S4和补充讨论) 说明,液滴直径的最大数量分数在1020plm范围。别离装置由20 wt%氟癸基POSS + x-PEGDA混合物浸渍-涂层网400 (2D = 37.5 Rm)组成,夹在两个垂直玻璃管之间。由于一 系列不同的孔径可用,使我们能够系统地改变膜的孔隙率,我们这里使用超亲水和疏油网。 我们的超亲水和超疏油织物表现出类似的性能。乳化加入上方管中(图3a)。一旦乳化中 的水与膜接触,外表就会开始重构。在几分钟内,富含水渗透液通过膜,而富含十六烷的 保存液保存在膜上方(图3b)o
14、膜的水下疏油性对于水包十六烷乳化的别离至关重要(图 3a,插图)。光学图像分析说明,膜几乎去除了所有直径超过40 gm的十六烷液滴(见补 充图S5和补充讨论)。热重分析(TGA;图3c)、透射率和密度测量(见补充图S6和 补充讨论)说明渗透液含0.1 wt%十六烷,而保存液含0.1 wt%水。其他实验说明, 我们可同样以99%的效率别离含有10 vol%和30 vol%十六烷的水包十六烷乳化。我 们也进行了对含盐(氯化钠)的水包十六烷乳化实验。与非盐水乳化一样,我们可以以 99%的效率别离盐水乳化。Figure 3 Batch separation of oil-in-water and wa
15、ter-in-oil emulsions, (a) Separationapparatus with a 50:50 v:v hexadecane-in-water emulsion above the membrane. Inset,hexadecane droplet on a surface spin-coated with a 20 wt% fluorodecyl POSS + x-PEGDAblend, submerged in water containing dissolved SDS(1 mg m(b) Water-rich permeatepasses through the
16、 membrane whereas hexadecane-rich retentate is retained, (c) TGA datafor the permeates and the retentates. HD, hexadecane, (d) Apparatus with a 30:70 v:v water-in-hexadecane emulsion above the membrane. Inset, hexadecane droplet on a surfacespin coated with a 20 wt% fluorodecyl POSS + x-PEGDA blend,
17、 submerged in watercontaining dissolved PSs80 (1 mg ml-1), (e) Water-rich permeate passes through themembrane whereas hexadecane-rich retentate is retained. Water is dyed blue andhexadecane is dyed red. Sscale bars, 2 cm.水包油和油包水乳化的序批别离。(a)膜上50:50 v:v水包十六烷乳化的别离装置。插图,20 wt%氟癸基POSS + x-PEGDA混合物旋转涂层外表上浸
18、没在含溶解的SDS (1 mgmr1)水中十六烷液滴。(b)富含水的渗透液通过膜,而富含十六烷的保存液保存下来。液通过膜,而富含十六烷的保存液保存下来。(c)渗透液和保存液的TGA数据。HD.十六烷。(d)膜上装有30:70 v:v十六烷包水乳化的装置。插图,20 wt%氟癸基POSS + x-PEGDA混合物旋转.涂层外表上浸没在含溶解PS 80 (1 mg ml水中的十六烷液滴。(e)富含是的渗透液通过膜,而富含十六烷的保存液保存下来。水被染成蓝色,十六烷染成红色。比例尺,2 cmoSeparation of water-in-oil emulsions.油包水乳化别离Figure 3d,
19、e shows the solely gravity-driven CFS of a water-in-oil emulsion (30 vol% water; Methods) stabilized using Polysorbate80 (PS80; HLB = 15). The apparatus is the same as that used for the separation of oil-in-water emulsions. The emulsion is added to the upper tube (Fig. 3d). Once water droplets withi
20、n the emulsion contact the membrane, the surface starts to reconfigure. Before the breakthrough of the water-rich permeate, hexadecane is retained above the membrane because of membrane oleophobicity in air. After surface reconfiguration, the water-rich permeate passes through the membrane while the
21、 hexadecane-rich retentate is retained above the membrane (Fig. 3e). During the permeation of the water-rich permeate, the hexadecane-rich retentate is retained above the membrane because of membrane oleophobicity under water. Membrane oleophobicity, both in air and under water, is critical for sepa
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 有效油-水分离的水-响应膜Hygro-responsive membranes for effective oilwater separation 有效 水分 响应 Hygro responsive
链接地址:https://www.taowenge.com/p-62846909.html
限制150内