2022四年级下册数学轴对称例1教案.docx
《2022四年级下册数学轴对称例1教案.docx》由会员分享,可在线阅读,更多相关《2022四年级下册数学轴对称例1教案.docx(22页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、2022四年级下册数学轴对称例1教案轴对称是四年级数学必学的知识。以下是小编要与大家分享的:2022四年级下册数学轴对称例1教案,供大家参考!2022四年级下册数学轴对称例1教案一数学课程标准要求第一学段的教学,让学生结合实例,感知平移、旋转、轴对称现象。这个目标所指的实例,主要是现实生活中的具体事例,联系实际事例(如电梯的升降、风扇叶片的转动、对折一个图案)可以直观感受物体的平移运动、旋转运动,以及轴对称的平面图形,积累一些有关物体或图形的运动变化的初步体验。本单元继续教学平移、旋转和轴对称,其内容与第一学段有较大的差异。课程标准要求在方格纸上把简单图形水平平移或竖直平移,在方格纸上按顺时针
2、方向或逆时针方向把简单图形旋转90;通过把图形对折,找到轴对称图形的对称轴,在方格纸上画出轴对称图形的对称轴,或者在方格纸上补全轴对称图形。上述的所有画图与操作活动,其目的都是让学生进一步体会平移、旋转和轴对称的含义,锻炼他们的空间想象能力,发展空间观念。全单元编排五道例题,具体安排如下表:例1 在方格纸上平移简单的图形例2 转杆的顺时针旋转与逆时针旋转例3 在方格纸上把简单图形旋转90例4轴对称图形的对称轴例5在方格纸上补全一个轴对称图形从表格里可以看到,安排一道例题教学图形的平移,两道例题教学图形的旋转,因为图形旋转是全单元的教学难点。把图形的运动变化都放在方格纸上进行,因为方格纸上的横线
3、互相平行,竖线互相平行,横线和竖线互相垂直,每个方格的大小都相同,有助于图形的水平平移和竖直平移,将图形旋转90也比较方便。而且,利用相同的小方格容易发现图形的上下对称或左右对称,从而找到轴对称图形的对称轴或补全轴对称图形。教学应充分利用方格纸的特点,降低学生画图的难度,让学生在画图中充分体会图形运动变化的数学含义,充分感受图形变换的思想。(一)突出图形在方格纸上平移变化的思想方法,放手学生主动认识平移、实践平移例1和“试一试”教学平面图形的平移。例题体验图形在方格纸上是怎样平移的,包括向什么方向平移和平移了多少距离。“试一试”按照规定的平移方向与距离,在方格纸上平移图形。可见,例题着重于教学
4、有关平移的数学知识,“试一试”着重于平移的操作实践。这样的安排,突出了平移变换的思想,有利于建立图形平移的概念;突出了平移变化的操作,有助于联系平移概念开展图形平移的操作活动,促进知识向能力的转化。1. 看懂图形在方格纸上平移的数学内容。例1在方格纸上呈现出小船图、金鱼图的平移过程,虚线画的图形表示平移前的位置,涂颜色的图形表示平移后的位置,虚线图形和涂色图形之间的箭头表示图形平移的方向。在情境图里可以看到,简单图形的平移,可以沿着方格纸的横线在水平方向进行,也可以沿着方格纸的竖线在竖直方向进行。说说“小船图和金鱼图分别是怎样运动的?它们的运动有什么相同点和不同点”,能引导学生初步看出小船图和
5、金鱼图都是向右平移,小船图平移的距离比金鱼图远一些,这就凸显了图形平移的两个基本要素平移的方向和平移的距离。对大多数学生来说,辨别图形在方格纸上平移的方向并不难,找到图形在方格纸上平移的距离不是很容易。例题接着要求“先数一数小船图向右平移了几格,再和同学交流自己的数法”。我们知道,图形平移是整体平移,图形上的所有部分,包括图形的每条线、每个点都向相同方向平移相同的距离。所以,只要数出图形的某条边或者某个点平移的距离,就能得到整体图形平移的距离。“辣椒”卡通看小船上的一条线,根据这条线向右平移了9格,得出小船图向右平移了9格,这是一种办法。“蘑菇”卡通看船头的一个点,根据这个点向右平移了9格,得
6、出小船图向右平移了9格,这也是一种方法。有些时候,根据一个点平移的距离得出整个图形平移的距离,比较方便。教材鼓励学生自主选择着眼点,按自己观察的某条线、某个点,判断小船图平移的距离。在交流中体会小船图的所有线、所有点都向相同方向平移了相同的距离,从而体验图形的平移是整体的平移,加强对图形平移的理解。例题还要求继续观察金鱼图向右平移了几格,巩固图形平移的知识,优化数出图形平移格数的方法。配合例1的“练一练”中,第1题让学生进一步明白,判断方格纸上的三角形是否向右平移10格,只要看三角形的某个顶点是否平移了10格。第2题数出方格纸上的房子图向上平移5格,汽车图向左平移8格,蘑菇图向下平移5格,体会
7、图形可以向各个方向平移任何距离。2. 在方格纸上平移简单图形。学生在例题里获得了图形平移的知识,就能进行图形平移的操作了。通过平移图形的实践,能深入体验图形平移的数学含义,并且把知识转化成能力。“试一试”在方格纸上给出一个平行四边形,要求画出这个平行四边形向下平移3格后的图形。教材希望学生先尝试着画图,再交流画法和体会。学生平移图形的方法一般会有两种:一种是先平移图形的各个顶点,然后依次联结相邻顶点,围成平移后的平行四边形。另一种是把平行四边形的各条边逐一平移,最终围成平移后的图形。其实,两种画法是一致的,只是画图的次序上有些差别而已。因为平移图形的每一条边,也得先平移它的两个端点,才能连接成
8、线段。所以,在方格纸上平移图形的教学,应该是学生的独立思考、自主探索、相互交流,应避免被动的接受学习。另外,教学“试一试”还要注意两点:一是图形平移后必须与平移前的形状、大小完全相同。因为图形平移只改变其所在位置,不改变它的形状和大小。如果画出的图形和原来的图形不一样,表明图形平移过程中出了差错(没有遵循相同的方向或相同的距离)。二是平移的图形应简单而有趣,使学生保持平移图形的热情,掌握平移图形的技能。如果平移过于复杂的图形,智力活动的含量未必有所增加,却使画图过分麻烦,会挫伤学习的积极性。另外,图形平移的距离应适当远一点,不要让平移前后的图形产生重叠。(二)联系实际事例指出旋转现象的要素,鼓
9、励学生在方格纸上把简单的图形旋转90例2和例3都教学图形的旋转。例2着重指出物体或图形的旋转方向和角度,例3在方格纸上把简单图形旋转90。显然,先安排旋转知识的教学,再安排旋转图形的操作实践,与平移图形的教学线索很相似。1. 体验描述物体旋转的基本要素。例2呈现停车场的转杆打开和关闭的图片,提出问题“转杆打开和关闭分别是怎样运动的?它们的运动有什么相同点和不同点?”这些问题能引导学生仔细观察转杆的运动,体验物体旋转是绕着一个固定点的运动,旋转有方向,旋转的方向不同,物体的运动状态就不同。例题的画面放大转杆旋转的情境,分别表示出转杆打开和关闭的旋转方向与角度。结合这些情境,指出“与时针旋转方向相
10、同的是顺时针旋转,相反的是逆时针旋转”,帮助学生联系时针的转动方向分辨物体旋转的方向。要求学生说说“转杆打开和关闭,分别是绕哪个点按什么方向旋转的?旋转了多少度?”引导他们同时关注物体旋转的三个要素,即绕一个固定点、旋转的方向、旋转的度数。如,转杆打开是转杆绕它的一个端点,按顺时针方向旋转90,转杆关闭是转杆绕它的一个端点按逆时针方向旋转90。当学生理解旋转运动是物体绕一个点,按一种确定的方向,旋转一定度数的运动,他们就较好地认识了旋转运动。配合例2和例3的“练一练”,第1题联系钟面上时针的旋转以及台秤的指针旋转,反复体会顺时针方向旋转90的现象;联系转盘上指针的旋转,进一步辨认顺时针方向旋转
11、与逆时针方向旋转。这些练习都在突出有关旋转的要素,本单元只把图形旋转90,练习里没有涉及其他度数的旋转。2. 体验简单图形在平面上的旋转,画出旋转90后的图形。例3在方格纸上把一个直角三角形绕它的直角顶点a逆时针旋转90,并画出旋转以后的图形。对大多数学生来说,这是比较难的任务。为此,教材先安排剪一个同样大的三角形,放在方格纸上转一下,整体感受图形的旋转,体会图形的每一条边都绕着同一个a点(三角形的直角顶点)旋转了90。尤其是两条直角边的旋转能看得很清楚,原来在水平位置上的直角边旋转90到了竖直位置上,原来在竖直位置上的直角边旋转90到了水平位置上。这两条直角边的长度在旋转中没有改变,分别保持
12、3个和4个小方格的边长。看到这些内容,就能体会旋转后图形的画法:分别画出两条直角边旋转90后的线段,连接两条线段的两个端点,围成的三角形就是原来三角形旋转90以后的图形。对例3的教学再提三点建议。首先,要认真理解题意,弄明白三角形“绕a点逆时针旋转90”的意思,确认旋转的方向和旋转时应围绕的固定点。其次,要明白例题安排的两个活动的意图,先是旋转图形的操作活动,再是画图形的活动,要在旋转三角形的操作中体会画旋转后图形的方法。另外,还可以适当进行基础练习,如在方格纸上画一条水平方向或竖直方向的线段,绕线段的一个端点,按顺时针方向或逆时针方向旋转90,画出旋转以后的线段。“练一练”第2题画长方形绕点
13、a(长方形的一个顶点)顺时针旋转90后的图形。比例3画直角三角形稍难一些,大多数学生应该能独立完成。一般应先画出长方形以a点为顶点的两条边旋转90以后的两条线段,再根据长方形的特点确定与a点相对的顶点旋转90以后的位置,然后画旋转以后的长方形的另两条边,把长方形画完整。(三)通过对折图形,确定轴对称图形的对称轴学生已经初步知道怎样的图形是轴对称图形,也初步认识了轴对称图形的对称轴。本单元继续教学轴对称图形,要通过对折图形,进一步识别轴对称图形及其对称轴,并在方格纸上画出轴对称图形的对称轴;还要在方格纸上,根据对称轴一侧的图形,画出另一侧的图形,补全轴对称图形。1. 对折长方形纸,画出折痕,教学
14、对称轴。三年级教科书里,用“对折”的方法判断某个图形是不是轴对称图形。本单元继续采用这种活动,认识轴对称图形的对称轴。例4给出长方形、正方形和平行四边形各一个,要求分别把这些图形分别“折一折,看哪些是轴对称图形”。通过对折,得出长方形和正方形都是轴对称图形,平行四边形不是轴对称图形,从而唤起对已有知识经验的回忆,激活头脑里的轴对称图形概念。教材要求学生交流长方形的对折方法,找到能使折痕两边完全重合的两种不同折法,指出“像这样对折,折痕所在的直线叫作轴对称图形的对称轴”,并且用“点划线”画出这两条对称轴。这里所讲的对称轴概念与画法,是例题教学的基础知识。学生应该在理解对称轴概念的基础上,通过对折
15、图形(动手操作或想象对折)找到轴对称图形的对称轴,并用点划线画出来。2. 对折正方形纸,寻找并画出正方形的对称轴。“试一试”提出问题“正方形有几条对称轴?”要求学生“折一折、画一画”。每一名学生都应该找一张正方形纸或者在纸上画一个正方形剪下来,通过对折正方形,找到正方形的对称轴。正方形可以上下对折、左右对折、斜着对折,都能做到折痕两边完全重合。所以,正方形有4条对称轴。教材希望学生通过寻找并画出正方形的所有对称轴,消化关于对称轴的知识,进一步体验轴对称图形的本质特征。3. 画出方格纸上的轴对称图形的对称轴,发展空间想象能力。配合例4和例5的“练一练”,第1题在方格纸上给出了三个图形,其中一个是
16、等腰三角形,一个是有些特殊的四边形,一个是等腰三角形和特殊四边形组成的图案,它们都是轴对称图形。这些图形都画在方格纸上,直接把它们对折很不方便,教材希望学生在头脑里想象这些图形的对折,想想每一个图形可以怎样对折,对折会出现怎样的结果,各个图形是不是轴对称图形,轴对称图形的对称轴在哪里。学生进行上述的思考,就是在想象图形的对折,他们的空间想象能力会得到提高。(四)在方格纸上补全轴对称图形,发展空间观念对折轴对称图形,折痕两边会完全重合。建立了轴对称图形的概念,看着对称轴的一侧,应该想象出它的另一侧。这种想象加强了关于轴对称图形的体验,有助于空间观念的发展。例5在方格纸上给出一个轴对称图形的对称轴
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 2022 四年级 下册 数学 轴对称 教案
限制150内