钢筋混凝土与砌体结构 (8).pdf
《钢筋混凝土与砌体结构 (8).pdf》由会员分享,可在线阅读,更多相关《钢筋混凝土与砌体结构 (8).pdf(9页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、 第 7 章 受拉构件承载力的计算 教学提示:轴心受拉构件在破坏时混凝土已裂通,拉力全部由截面的钢筋承担。偏心受拉构件不存在偏心距增大的问题。当纵向拉力 N 的作用点在截面两侧钢筋之内属小偏心受拉;当纵向拉力 N 的作用点在截面两侧钢筋之外属大偏心受拉。小偏心受拉构件破坏时,截面混凝土全部开裂,拉力由钢筋承担,但总是一侧钢筋屈服,另一侧钢筋未达屈服。大偏心受拉构件破坏时,截面仅部分开裂,未开裂混凝土可以承担部分压力。教学要求:要求学生掌握轴心受拉构件的受力全过程、破坏形态、正截面受拉承载力的计算方法与配筋的主要构造要求;掌握偏心受拉构件的受力全过程、两种破坏形态的特征以及对称配筋矩形截面偏心受
2、拉构件正截面受拉承载力的计算方法与配筋的主要构造要求;熟悉偏心受拉构件斜截面受剪承载力的计算。7.1 概 述 当构件受到纵向拉力时,称为受拉构件。当纵向拉力作用线与构件截面形心轴线重合时为轴心受拉构件;当纵向拉力作用线与构件截面形心轴线不重合或构件上同时既作用有纵向拉力又作用有弯矩时,则称为偏心受拉构件。在建筑工程中,轴心受拉构件很少,但由于轴心受拉构件计算简单,有些构件,如钢筋混凝土桁架中的拉杆、有内压力的圆管管壁、圆形水池的环形池壁等,可近似按轴心受拉构件计算。联肢剪力墙的某些墙肢、双肢柱的某些肢杆、悬伸式桁架承受节间竖向荷载的受拉上弦杆,以及一般屋架承担节间荷载的下弦杆等都属于偏心受拉构
3、件;此外,矩形筒仓、斗仓及水池,其仓壁或池壁同时受到轴向拉力及弯矩的作用,故也属于偏心受拉构件。从充分利用材料强度来看,由于混凝土的抗拉强度很低,承受拉力时不能充分发挥其强度;从减轻构件开裂来看,由于混凝土在较小的拉力作用下就会开裂,构件中的裂缝宽度将随着拉力的增加而不断加大;因此,用普通钢筋混凝土构件承受拉力,是不合理也不合适的。对承受拉力的构件一般采用预应力混凝土或钢结构。但在实际工程中,钢筋混凝土结构屋架或托架的受拉弦杆以及拱的拉杆仍采用钢筋混凝土。这主要是由于对局部有受拉构件时,如若将受拉构件做成钢构件,不仅会给施工带来不便,也会因处理钢筋混凝土和钢构件之间的连接构造而给设计带来不便,
4、在此情况下也常将受拉构件设计为钢筋混凝土构件。这样既免去了经常性的维护,并且使构件的刚度较大。但在设计时要采取措施把构件的裂缝宽度控制在允许的范围内。在钢筋混凝土结构中的有些构件如屋架中的部分腹杆,以承受轴向压力为主,但在某些荷载组合下有时会承受轴向拉力,从而发生内力变号现象。因此在设计时除要按受压构件和受拉构件两种情况进行承载力计算,而且也要按受拉构件进行裂缝计算。第 7 章 受拉构件承载力的计算 191191混凝土的抗拉强度低,一般在外拉力不大时,混凝土就会出现裂缝。因此除了要进行承载力计算外,还需要进一步作抗裂度或裂缝宽度的验算。钢筋混凝土轴心受拉构件无论采用何种形式的截面,其纵向钢筋在
5、截面中都应对称布置或沿周边均匀布置,偏心受拉构件的截面多为矩形。由于偏心受拉构件的截面作用有弯矩,所以矩形截面的长边宜和弯矩作用平面平行,纵向钢筋布置在短边上。轴心受拉和偏心受拉构件中的纵向钢筋配筋率均应满足最小配筋率的要求。箍筋一般间距不宜大于 200mm,直径 4mm6mm。偏心受拉构件须进行斜截面抗剪承载力计算,配置箍筋时应予考虑。7.2 轴心受拉构件正截面受拉承载力 7.2.1 轴心受拉构件的受力特征 通过轴心受拉构件的试验,得到轴向拉力与变形的关系曲线(如图 7.1 所示)。图 7.1 轴心受拉构件试验曲线 从图中可以看出,关系曲线上有两个明显的转折点,从加载开始到破坏为止,其受力过
6、程可分为 3 个受力阶段:第一阶段为从加载到混凝土受拉开裂前,也称为整体工作阶段。此时混凝土与钢筋共同工作,但应力和应变都很小,并大致成正比,应力与应变曲线接近于直线。在第一工作阶段末,混凝土拉应变达到极限拉应变,裂缝即将产生。此阶段作为轴心受拉构件不允许开裂的抗裂验算的依据。第二阶段为混凝土开裂后至钢筋即将屈服,也称为带裂缝工作阶段。当荷载增加到某一数值时,在构件较薄弱的部位会首先出现法向裂缝。构件裂缝截面处的混凝土随即退出工作,拉力全部由钢筋承担;随着荷载继续增大,其他一些截面上也先后出现法向裂缝,裂缝的产生使截面刚度降低,在曲线上出现第一个转折点,导致应变的发展远远大于应力的增加,反映出
7、钢筋和混凝土之间发生了应力重分布。将构件分割为几段的贯通横截面的裂缝处只有钢筋联接着。但裂缝间的混凝土仍能协同钢筋承担一部分拉力,此时构件受到的使用荷载大约为破坏荷载的 5070。此阶段作为构件正常使用混凝土结构设计原理 192 192 进行裂缝宽度和变形验算的依据。第三阶段为受拉钢筋开始屈服到构件破坏,也称为破坏阶段。当荷载继续增加到某一数值时,在某一裂缝截面处的个别薄弱钢筋首先达到屈服,应变增大,裂缝迅速扩展,这时荷载稍稍增加,甚至不增加,都会导致截面上的钢筋全部达到屈服。此时应变突增,整个构件达到极限承载能力。此阶段作为轴心受拉构件正截面承载力计算的依据。有两点值得注意:一是由于破坏时的
8、实际变形值很难得到,因此,轴心受拉构件破坏的标准不是构件拉断,而是钢筋屈服;二是应力重分布的概念,在截面出现裂缝之前,混凝土与钢筋共同工作,承担拉力,两者具有相同的拉伸应变,但二者的应力却与它们各自的弹性模量(或割线模量)成正比,即钢筋的拉应力远远高于混凝土的拉应力。而当混凝土开裂后,裂缝截面处受拉混凝土随即退出工作,原来由混凝土承担的拉应力将转嫁给钢筋承担,这时钢筋的应力突增,混凝土的应力降至零。这种在截面上混凝土与钢筋之间应力的转移,称为截面上的应力重分布。7.2.2 轴心受拉构件正截面受拉承载力计算 轴心受拉构件破坏时,混凝土已退出工作,全部拉力由钢筋来承受,直到钢筋受拉屈服,这时轴心受
9、拉构件达到其正截面受拉极限承载力。基本计算公式:ysNf A=(7-1)式中,N轴向拉力设计值;yf钢筋抗拉强度设计值。为了控制受拉构件在使用荷载下的变形和裂缝开展,GB 500102002 规定:轴心受拉和小偏心受拉构件的钢筋混凝土抗拉强度设计值大于 300N/mm2时,仍应按 300N/mm2取用;sA纵向钢筋的全部截面面积。【例 7.1】已知某钢筋混凝土屋架下弦,截面尺寸bh=250mm150mm,其所受的轴心拉力设计值为 300kN,混凝土强度等级为 C30,钢筋为 HRB335。求截面中的配筋。解 查表:HRB335 钢筋,yf=300N/mm2,代入式(7-1)得:sy/ANf=3
10、00000/300=1000 mm2 选用 418,sA=1017 mm2,满足要求。7.3 偏心受拉构件正截面受拉承载力 偏心受拉构件,按纵向拉力N作用在截面上的位置不同,分为小偏心受拉与大偏心受拉两种:当纵向拉力N的作用点在截面两侧钢筋之内,属于小偏心受拉;当纵向拉力N的作用点在截面两侧钢筋之外,属于大偏心受拉。第 7 章 受拉构件承载力的计算 1931937.3.1 小偏心受拉构件的受力特征 当纵向拉力作用在两侧钢筋以内时,截面在接近纵向拉力一侧受拉,而远离纵向拉力一侧可能受拉也可能受压。当偏心距较小时,全截面受拉,接近纵向力一侧应力较大,远离纵向力一侧应力较小;当偏心距较大时,接近纵向
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 钢筋混凝土与砌体结构 8 钢筋混凝土 结构
限制150内