高一数学《单位圆与正弦函数、余弦函数的基本性质》教案.docx
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_05.gif)
《高一数学《单位圆与正弦函数、余弦函数的基本性质》教案.docx》由会员分享,可在线阅读,更多相关《高一数学《单位圆与正弦函数、余弦函数的基本性质》教案.docx(16页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、高一数学单位圆与正弦函数、余弦函数的基本性质教案从单位圆看正弦函数的性质教案设计 5.1单位圆与正弦函数一、教学目标1、学问与技能:(1)回忆锐角的正弦函数定义;(2)娴熟运用锐角正弦函数的性质;(3)理解通过单位圆引入随意角的正弦函数的意义;(4)驾驭随意角的正弦函数的定义;(5)理解有向线段的概念;(6)了解正弦函数图像的画法;(7)驾驭五点作图法,并会用此方法画出0,2上的正弦曲线。2、过程与方法:初中所学的正弦函数,是通过直角三角形中给出定义的;由于我们已将角推广到随意角的状况,而且一般都是把角放在平面直角坐标系中,这样一来,我们就在直角坐标系中来找直角三角形,从而引出单位圆;利用单位
2、圆的独特性,是中学数学中的一种重要方法,在其次节课的正弦函数图像,以及在后面的正弦函数的性质中都有干脆的应用;讲解例题,总结方法,巩固练习。3、情感看法与价值观:通过本节的学习,使同学们对正弦函数的概念有了一个新的相识;在由锐角的正弦函数推广到随意角的正弦函数的过程中,体会特别与一般的关系,形成一种辩证统一的思想;通过单位圆的学习,建立数形结合的思想,激发学习的学习主动性;培育学生分析问题、解决问题的实力。二、教学重、难点重点:1.随意角的正弦函数定义,以及正弦函数值的几何表示。2.正弦函数图像的画法。难点:1.正弦函数值的几何表示。2.利用正弦线画出ysinx,x0,2的图像。三、学法与教法
3、在初中,我们知道直角三角形中锐角的对边比上斜边就叫着这个角的正弦,当把锐角放在直角坐标系中时,角的终边与单位圆交于一点,正弦函数对应于该点的纵坐标,当是随意角时,通过函数定义的形式引出正弦函数的定义;作正弦函数ysinx图像时,在正弦函数定义的基础上,通过平移正弦线得出其图像,再归结为五点作图法。教法:探究探讨法。四、教学过程(一)、创设情境,揭示课题我们学习角的概念的推广和弧度制,就是为了学习三角函数。请同学们回忆(1)角的概念的推广及弧度制、象限角等概念;(2)初中所学的正弦函数是如何定义的?并想一想它有哪些性质?学生思索回答以后,老师小结。(板书课题)(二)、探究新知 在初中,我们学习了
4、锐角的正弦函数值:sin,如图:sinA,由于a是直角边,c是斜边,所sinA(0,1)。由于我们通常都是将角放到平面直角坐标系中,我们来看看会发生什么? 在直角坐标系中,(如图所示),设角(0,)的终边与半经为r的圆交于点P(a,b),则角的正弦值是:sin.依据相像三角形的学问可知,对于确定的角,都不会随圆的半经的变更而变更。为简洁起见,令r1(即为单位圆),那么sinb,也就是说,若角的终边与单位圆相交于P,则点P的纵坐标b就是角的正弦函数。直角三角形明显不能包含全部的角,那么,我们可以仿照锐角正弦函数的定义你认为该如何定义随意角的正弦函数?一般地,在直角坐标系中(如上图),对随意角,它
5、的终边与单位圆交于点P(a,b),我们可以唯一确定点P(a,b)的纵坐标b,所以P点的纵坐标b是角的函数,称为正弦函数,记作ysin(R)。通常我们用x,y分别表示自变量与因变量,将正弦函数表示为ysinx.正弦函数值有时也叫正弦值.请同学们画图,并利用正弦函数的定义比较说明:角与角的终边与单位圆的交点的纵坐标有什么关系?它们的正弦值有什么关系?角和角呢?角和角呢?角和角呢? sin=sin=sin=-sin=-y Sin(-)=sin()=ysin(-)=sin(-)=y通过上述问题的探讨,简单得到:终边相同的角的正弦函数值相等,即sin(2k)sin(kZ),说明对于随意一个角,每增加2的
6、整数倍,其正弦函数值不变。所以,正弦函数是随角的改变而周期性改变的,正弦函数是周期函数,2k(kZ,k0)为正弦函数的周期。2是正弦函数的正周期中最小的一个,称为最小正周期。一般地,对于周期函数f(x),假如它全部的周期中存在一个最小的正数,那么这个最小的正数就叫作f(x)的最小正周期。【巩固深化,发展思维】1若点P(3,y)是终边上一点,且sin,求y值【】2若角的顶点为坐标原点,始边与x轴正半轴重合,终边在函数y3x(x0)的图像上,则sin。【】(三)、归纳整理,整体相识:(1)请学生回顾本节课所学过的学问内容有哪些?所涉及到的主要数学思想方法有那些?(2)在本节课的学习过程中,还有那些
7、不太明白的地方,请向老师提出。(3)你在这节课中的表现怎样?你的体会是什么?(四)、作业布置:1、已知锐角终边上一点(3,4),求角的正弦值。2、已知是角终边上一点,求的值。3、已知角的终边落在直线上,求的值。4、若实数,满意,求:的值。(五)、课后反思: 高一数学学问点复习:函数的基本性质 高一数学学问点复习:函数的基本性质 函数的有关概念1.函数的概念:设A、B是非空的数集,假如根据某个确定的对应关系f,使对于集合A中的随意一个数x,在集合B中都有唯一确定的数f(x)和它对应,那么就称f:AB为从集合A到集合B的一个函数.记作:y=f(x),xA.其中,x叫做自变量,x的取值范围A叫做函数
8、的定义域;与x的值相对应的y值叫做函数值,函数值的集合f(x)|xA叫做函数的值域.留意:假如只给出解析式y=f(x),而没有指明它的定义域,则函数的定义域即是指能使这个式子有意义的实数的集合;函数的定义域、值域要写成集合或区间的形式.定义域补充能使函数式有意义的实数x的集合称为函数的定义域,求函数的定义域时列不等式组的主要依据是:(1)分式的分母不等于零;(2)偶次方根的被开方数不小于零;(3)对数式的真数必需大于零;(4)指数、对数式的底必需大于零且不等于1.(5)假如函数是由一些基本函数通过四则运算结合而成的.那么,它的定义域是使各部分都有意义的x的值组成的集合.(6)指数为零底不行以等
9、于零构成函数的三要素:定义域、对应关系和值域再留意:(1)构成函数三个要素是定义域、对应关系和值域.由于值域是由定义域和对应关系确定的,所以,假如两个函数的定义域和对应关系完全一样,即称这两个函数相等(或为同一函数)(2)两个函数相等当且仅当它们的定义域和对应关系完全一样,而与表示自变量和函数值的字母无关。相同函数的推断方法:表达式相同;定义域一样(两点必需同时具备)值域补充(1)、函数的值域取决于定义域和对应法则,不论实行什么方法求函数的值域都应先考虑其定义域.(2).应熟识驾驭一次函数、二次函数、指数、对数函数及各三角函数的值域,它是求解困难函数值域的基础.(3).求函数值域的常用方法有:
10、干脆法、反函数法、换元法、配方法、均值不等式法、判别式法、单调性法等.3.函数图象学问归纳(1)定义:在平面直角坐标系中,以函数y=f(x),(xA)中的x为横坐标,函数值y为纵坐标的点P(x,y)的集合C,叫做函数y=f(x),(xA)的图象.C上每一点的坐标(x,y)均满意函数关系y=f(x),反过来,以满意y=f(x)的每一组有序实数对x、y为坐标的点(x,y),均在C上.即记为C=P(x,y)|y=f(x),xA图象C一般的是一条光滑的连续曲线(或直线),也可能是由与随意平行与Y轴的直线最多只有一个交点的若干条曲线或离散点组成.(2)画法A、描点法:依据函数解析式和定义域,求出x,y的
11、一些对应值并列表,以(x,y)为坐标在坐标系内描出相应的点P(x,y),最终用平滑的曲线将这些点连接起来.B、图象变换法(请参考必修4三角函数)常用变换方法有三种,即平移变换、伸缩变换和对称变换(3)作用:1、直观的看出函数的性质;2、利用数形结合的方法分析解题的思路。提高解题的速度。发觉解题中的错误。4.快去了解区间的概念(1)区间的分类:开区间、闭区间、半开半闭区间;(2)无穷区间;(3)区间的数轴表示.5.什么叫做映射一般地,设A、B是两个非空的集合,假如按某一个确定的对应法则f,使对于集合A中的随意一个元素x,在集合B中都有唯一确定的元素y与之对应,那么就称对应f:AB为从集合A到集合
12、B的一个映射。记作“f:AB”给定一个集合A到B的映射,假如aA,bB.且元素a和元素b对应,那么,我们把元素b叫做元素a的象,元素a叫做元素b的原象说明:函数是一种特别的映射,映射是一种特别的对应,集合A、B及对应法则f是确定的;对应法则有“方向性”,即强调从集合A到集合B的对应,它与从B到A的对应关系一般是不同的;对于映射f:AB来说,则应满意:()集合A中的每一个元素,在集合B中都有象,并且象是唯一的;()集合A中不同的元素,在集合B中对应的象可以是同一个;()不要求集合B中的每一个元素在集合A中都有原象。常用的函数表示法及各自的优点:函数图象既可以是连续的曲线,也可以是直线、折线、离散
13、的点等等,留意推断一个图形是否是函数图象的依据;解析法:必需注明函数的定义域;图象法:描点法作图要留意:确定函数的定义域;化简函数的解析式;视察函数的特征;列表法:选取的自变量要有代表性,应能反映定义域的特征.留意啊:解析法:便于算出函数值。列表法:便于查出函数值。图象法:便于量出函数值补充一:分段函数(参见课本P24-25)在定义域的不同部分上有不同的解析表达式的函数。在不同的范围里求函数值时必需把自变量代入相应的表达式。分段函数的解析式不能写成几个不同的方程,而就写函数值几种不同的表达式并用一个左大括号括起来,并分别注明各部分的自变量的取值状况.(1)分段函数是一个函数,不要把它误认为是几
14、个函数;(2)分段函数的定义域是各段定义域的并集,值域是各段值域的并集.补充二:复合函数假如y=f(u),(uM),u=g(x),(xA),则y=fg(x)=F(x),(xA)称为f、g的复合函数。 正弦函数,余弦函数的图象 临清三中数学组1.4.1正弦函数,余弦函数的图象 【教材分析】正弦函数,余弦函数的图象是中学新教材人教A版必修四的内容,作为函数,它是已学过的一次函数、二次函数、指数函数与对数函数的后继内容,是在已有三角函数线学问的基础上,来探讨正余弦函数的图象与性质的,它是学习三角函数图象与性质的入门课,是今后探讨余弦函数、正切函数的图象与性质、正弦型函数的图象的学问基础和方法打算。因
15、此,本节的学习在全章中乃至整个函数的学习中具有极其重要的地位与作用。本节共分两个课时,本课为第一课时,主要是利用正弦线画出的图象,考察图象的特点,用“五点作图法”画简图,并驾驭与正弦函数有关的简洁的图象平移变换和对称变换;再利用图象探讨正余弦函数的部分性质(定义域、值域等)【教学目标】1.学会用单位圆中的正弦线画出正余弦函数的图象,通过对正弦线的复习,来发觉几何作图与描点作图之间的本质区分,以培育运用已有数学学问解决新问题的实力。2.驾驭正余弦函数图象的“五点作图法”;3.渗透由抽象到详细的思想,使学生理解动与静的辩证关系,培育辩证唯物主义观点。【教学重点难点】教学重点:“五点法”画长度为一个
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 单位圆与正弦函数、余弦函数的基本性质 数学 单位 正弦 函数 余弦 基本 性质 教案
![提示](https://www.taowenge.com/images/bang_tan.gif)
限制150内