七年级下册数学培优资料1第五章-相交线与平行线-教师版(共8页).doc
《七年级下册数学培优资料1第五章-相交线与平行线-教师版(共8页).doc》由会员分享,可在线阅读,更多相关《七年级下册数学培优资料1第五章-相交线与平行线-教师版(共8页).doc(8页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、精选优质文档-倾情为你奉上七年级下册数学培优资料第5章 相交线与平行线例1如图(1),直线a与b平行,1(3x+70),2=(5x+22),求3的度数。解:ab,34(两直线平行,内错角相等)1+32+4180(平角的定义)12 (等式性质)则3x+705x+22解得x=24 即11423180-138 图(1)评注:建立角度之间的关系,即建立方程(组),是几何计算常用的方法。例2已知:如图(2), ABEFCD,EG平分BEF,B+BED+D =192,B-D=24,求GEF的度数。解:ABEFCD B=BEF,DEF=D(两直线平行,内错角相等) B+BED+D =192(已知) 即B+B
2、EF+DEF+D=1922(B+D)=192(等量代换)则B+D=96(等式性质)B-D=24(已知) 图(2)B=60(等式性质) 即BEF=60(等量代换) EG平分BEF(已知)GEF=BEF=30(角平分线定义)例3如图(3),已知ABCD,且B=40,D=70,求DEB的度数。解:过E作EFABABCD(已知)EFCD(平行公理)BEF=B=40 DEF=D=70(两直线平行,内错角相等)DEB=DEF-BEF DEB =D-B=30 评注:证明或解有关直线平行的问题时,如果不构成“三线八角”,则应添出辅助线。图(3)例4平面上n条直线两两相交且无3条或3条以上直线共点,有多少个不同
3、交点?解:2条直线产生1个交点,第3条直线与前面2条均相交,增加2个交点,这时平面上3条直线共有1+2=3个交点;第4条直线与前面3条均相交,增加3个交点,这时平面上4条直线共有1+2+3=6个交点;则n条直线共有交点个数:1+2+3+ (n-1)=n(n-1)评注:此题是平面上n条直线交点个数最多的情形,需要仔细观察,由简及繁,深入思考,从中发现规律。例56个不同的点,其中只有3点在同一条直线上,2点确定一条直线,问能确定多少条直线?解:6条不同的直线最多确定:5+4+3+2+1=15条直线,除去共线的3点中重合多算的2条直线,即能确定的直线为15-2=13条。另法:3点所在的直线外的3点间
4、最多能确定3条直线,这3点与直线上的3点最多有33=9条直线,加上3点所在的直线共有:3+9+1=13条评注:一般地,平面上n个点最多可确定直线的条数为:1+2+3+(n-1)=n(n-1)例610条直线两两相交,最多将平面分成多少块不同的区域?解:2条直线最多将平面分成2+2=4个不同区域;3条直线中的第3条直线与另两条直线相交,最多有两个交点,此直线被这两点分成3段,每一段将它所在的区域一分为二,则区域增加3个,即最多分成2+2+3=7个不同区域;同理:4条直线最多分成2+2+3+4=11个不同区域; 10条直线最多分成2+2+3+4+5+6+7+8+9+10=56个不同区域推广:n条直线
5、两两相交,最多将平面分成2+2+3+4+n=1+n(n+1)=(n2+n+2)块不同的区域思考:平面内n个圆两两相交,最多将平面分成多少块不同的区域?直线的条数345.n对顶角的对数61220.n(n-1)邻补角的对数122440.2n(n-1)例7两条直线相交于一点,所形成的的角中有2对对顶角,4对邻补角,那么,三条直线相交于一点时,有多少对对顶角,多少对邻补角?四条直线相交于一点时,有多少对对顶角,多少对邻补角?n条直线相交于一点时,有多少对对顶角,多少对邻补角?二、巩固练习1平面上有5个点,其中仅有3点在同一直线上,过每2点作一条直线,一共可以作直线()条A6B 7C8D92平面上三条直
6、线相互间的交点个数是()A3B1或3C1或2或3D不一定是1,2,33平面上6条直线两两相交,其中仅有3条直线过一点,则截得不重叠线段共有()A36条B33条C24条D21条4已知平面中有个点三个点在一条直线上,四个点也在一条直线上,除些之外,再没有三点共线或四点共线,以这个点作一条直线,那么一共可以画出38条不同的直线,这时等于( ) (A)9 (B)10 (C)11 (D)125若平行直线AB、CD与相交直线EF、GH相交成如图示的图形,则共得同旁内角()A4对B8对C12对D16对6如图,已知FDBE,则1+2-3=( )A90B135C150D180 第7题 7如图,已知ABCD,1=
7、2,则E与F的大小关系 ;8平面上有5个点,每两点都连一条直线,问除了原有的5点之外这些直线最多还有 交点9平面上3条直线最多可分平面为 个部分。10如图,已知ABCDEF,PSGH于P,FRG=110,则PSQ 。11已知A、B是直线L外的两点,则线段AB的垂直平分线与直线的交点个数是 。12平面内有4条直线,无论其关系如何,它们的交点个数不会超过 个。13已知:如图,DECB ,求证:AED=A+B14已知:如图,ABCD,求证:B+D+F=E+G第13题 第14题15如图,已知CBAB,CE平分BCD,DE平分CDA,EDC+ECD =90,求证:DAAB16一直线上5点与直线外3点,每
8、两点确定一条直线,最多确定多少条不同直线?答案1 5个点中任取2点,可以作4+3+2+110条直线,在一直线上的3个点中任取2点,可作2+13条,共可作10-3+18(条)故选C2平面上3条直线可能平行或重合。故选D3对于3条共点的直线,每条直线上有4个交点,截得3条不重叠的线段,3条直线共有9条不重叠的线段对于3条不共点的直线,每条直线上有5个交点,截得4条不重叠的线段,3条直线共有12条不重叠的线段。故共有21条不重叠的线段。故选D4由个点中每次选取两个点连直线,可以画出条直线,若三点不在一条直线上,可以画出3条直线,若四点不在一条直线上,可以画出6条直线, 整理得 n+90 选B。5直线
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 年级 下册 数学 资料 第五 相交 平行线 教师版
限制150内