八年级下册《勾股定理的应用》导学案.docx
《八年级下册《勾股定理的应用》导学案.docx》由会员分享,可在线阅读,更多相关《八年级下册《勾股定理的应用》导学案.docx(8页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、八年级下册勾股定理的应用导学案八年级数学下册勾股定理的逆定理学案 八年级数学下册勾股定理的逆定理学案 教学目标:学问技能:1、理解勾股定理的逆定理的证明方法并能证明勾股定理的逆定理。2、驾驭勾股定理的逆定理,并能利用勾股定理的逆定理判定一个三角形是不是直角三角形过程与方法:1、通过对勾股定理的逆定理的探究,经验学问的发生、发展与形成的过程2、通过用三角形三边的数量关系来推断三角形的形态,体验数与形结合方法的应用3、通过勾股定理的逆定理的证明,体会数与形结合方法在问题决中的作用,并能运用勾股定理的逆定理解决相关问题。情感看法:1、通过用三角形三边的数量关系来推断三角形的形态,体验数与形的内在联系
2、。2、在探究勾股定理的逆定理的活动中,通过一系列富有探究性的问题,渗透与他人沟通、合作的意识和探究精神重点:理解并驾驭勾股定理的逆定理,并会应用。难点:理解勾股定理的逆定理的推导证明。(一)、创设情景,设疑引新。1.多媒体:展示图片:古埃及底比斯壁画:许多几何学问源自古埃及人的劳作,他们只用一根绳子就能确定直角2.展示图片:古埃及人制作直角的方法3.让学生由设置的情境说出心中的疑问.4.引入新课.(二)、探究学习,解决问题。探究问题一:如何确定古埃及人所围成的三角形是直角三角形?1、学生自我展示解决问题的方法2、小组合作沟通解决问题的方法3、老师点拨,总结升华探究问题二:满意什么条件的线段才能
3、围成一个直角三角形?1、学生自我展示解决问题的方法2、小组合作沟通解决问题的方法3、老师点拨,总结升华4、老师引导学生发觉新问题探究问题三:随意三条线段,满意其中两个线段的平方和等于第三条线段的平方,那么这三个线段就能围成直角三角形呢?1、命题与逆命题的学习(1)老师引导学生画出几何图形,用几何语言写出学生的猜想命题1。(2)展示命题2(3)提出问题:让学生找出命题1与命题2有何关系(4)命题与逆命题的定义(5)应用:写出命题的逆命题并推断两者是否是真命题。2、探究:如何证明命题1是正确的(1)、学生自我展示解决问题的方法(2)、小组合作沟通解决问题的方法(3)、老师点拨,总结升华(三)、归纳
4、总结,提升认知1、总结勾股定理的逆定理2、学习定理与逆定理的定义(四)、新知应用,实力提升例1设三角形三边长分别为下列各组数,试推断各三角形是否是直角三角形。(1)7,24,25;(2)12,35,37;(3)13,11,9。练习1、如图所示的三角形中,哪些是直角三角形,哪些不是,说说你的理由。解:设每个小正方形的边长为1个单位,则在图中的三角形中,可由勾股定理求在其三边所在的个点直角三角形中求出其三边分别为1,3,2。因为这三个边满意a2+b2=c2,依据勾股定理的逆定理所以这个三角形为直角三角形练习2、已知:如图,四边形ABCD中,B90,AB3,BC4,CD12,AD13,求四边形ABC
5、D的面积?(五)课堂小结本节课我学习了:1、_的推理与论证,知道了勾股定理的逆定理是推断一个三角形是否是_的一个常用的方法。2、还学习了定理与逆定理,能依据一个命题写出它的逆命题,并能推断它们是否是_定理。3、学会运用_计算和证明。并了解了一个重要思想_思想。(六)课外拓展:图片展示:1、以x、y、z为三边长的三角形是直角三角形(z最长)x2+y2=z2(x、y、z为正数)想一想:关于x、y、z的方程x2+y2=z2有没有正数解?古希腊数学家丢番图在算术中指出:关于x、y、z的方程x2+y2=z2有多数组正数解。2、邮票上的费马与费马大定理(教材35页)(七)作业布置教材33页练习 勾股定理的
6、应用学案 学习目标:1.能利用勾股定理和直角三角形的判定方法(即勾股定理的逆定理)解决生活中的数学问题;2.在运用勾股定理及其逆定理解决实际问题的过程中,感受数学的“转化”思想,进一步发展有条理思索和有条理表达的实力,体会数学的应用价值;重点、难点:经验运用勾股定理及其逆定理的数学化过程,体会数学的应用价值.学习过程一.【预学提纲】初步感知、激发爱好1.用如图所示的硬纸板,拼成一个能证明勾股定理的图形,画出图形,加以说明.2.说明以a=m-n,b=2mn,c=m-n为边的三角形是直角三角形. 二.【预学练习】初步运用、生成问题1.甲、乙两人从同一地点动身,甲往东走了8km,乙往南走了6km后甲
7、、乙两人相距_km.2.如图,一块长方形水泥操场,一学生要从A角走到C角,至少走米 3.一个三角形的三边的比为5:12:13,它的周长为60cm,则它的面积是_.4.以下列三个数为边长的三角形能组成直角三角形的个数是()6,7,8;8,15,17;7,24,25;12,35,37.A.1B.2C.3D.45.下列命题假如a、b、c为一组勾股数,那么4a、4b、4c仍是勾股数;假如直角三角形的两边是3、4,那么第三边必是5;假如一个三角形的三边是12、25、21,那么此三角形必是直角三角形;一个等腰直角三角形的三边是a、b、c,(ab=c),那么a2b2c2=211.其中正确的是()A、B、C、
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 勾股定理的应用 年级 下册 勾股定理 应用 导学案
限制150内