《北京市中考数学试题(含答案解析).docx》由会员分享,可在线阅读,更多相关《北京市中考数学试题(含答案解析).docx(17页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、北京市中考数学试题(含答案解析)2020年北京市中考数学试卷 一、选择题(本题共16分,每小题2分)第1-8题均有四个选项,符合题意的选项只有一个 1如图是某几何体的三视图,该几何体是() A圆柱 B圆椎 C三棱柱 D长方体 22020年6月23日,北斗三号最终一颗全球组网卫星从西昌卫星放射中心放射升空,6月30日胜利定点于距离地球36000公里的地球同步轨道将36000用科学记数法表示应为() A0.36105 B3.6105 C3.6104 D36103 3如图,AB和CD相交于点O,则下列结论正确的是() A12 B23 C14+5 D25 4下列图形中,既是中心对称图形也是轴对称图形的
2、是() A B C D 5正五边形的外角和为() A180 B360 C540 D720 6实数a在数轴上的对应点的位置如图所示,若实数b满意aba,则b的值可以是() A2 B1 C2 D3 7不透亮的袋子中有两个小球,上面分别写着数字“1”,“2”,除数字外两个小球无其他差别从中随机摸出一个小球,记录其数字,放回并摇匀,再从中随机摸出一个小球,记录其数字,那么两次记录的数字之和为3的概率是() A B C D 8有一个装有水的容器,如图所示,容器内的水面高度是10cm,现向容器内注水,并同时起先计时,在注水过程中,水面高度以每秒0.2cm的速度匀速增加,则容器注满水之前,容器内的水面高度与
3、对应的注水时间满意的函数关系是() A正比例函数关系 B一次函数关系 C二次函数关系 D反比例函数关系 二、填空题(本题共16分,每小题2分) 9若代数式有意义,则实数x的取值范围是 10已知关于x的方程x2+2x+k0有两个相等的实数根,则k的值是 11写出一个比大且比小的整数 12方程组的解为 13在平面直角坐标系xOy中,直线yx与双曲线y交于A,B两点若点A,B的纵坐标分别为y1,y2,则y1+y2的值为 14如图,在ABC中,ABAC,点D在BC上(不与点B,C重合)只需添加一个条件即可证明ABDACD,这个条件可以是 (写出一个即可) 15如图所示的网格是正方形网格,A,B,C,D
4、是网格线交点,则ABC的面积与ABD的面积的大小关系为:SABC SABD(填“”,“”或“”) 16如图是某剧场第一排座位分布图甲、乙、丙、丁四人购票,所购票数分别为2,3,4,5每人选座购票时,只购买第一排的座位相邻的票,同时使自己所选的座位号之和最小,假如按“甲、乙、丙、丁”的先后依次购票,那么甲购买1,2号座位的票,乙购买3,5,7号座位的票,丙选座购票后,丁无法购买到第一排座位的票若丙第一个购票,要使其他三人都能购买到第一排座位的票,写出一种满意条件的购票的先后依次 三、解答题(本题共68分,第17-20题,每小题5分,第21题6分,第22题5分,第23-24题,每小题5分,第25题
5、5分,第26题6分,第27-28题,每小题5分)解答应写出文字说明、演算步骤或证明过程 17(5分)计算:()1|2|6sin45 18(5分)解不等式组: 19(5分)已知5x2x10,求代数式(3x+2)(3x2)+x(x2)的值 20(5分)已知:如图,ABC为锐角三角形,ABAC,CDAB 求作:线段BP,使得点P在直线CD上,且ABPBAC 作法:以点A为圆心,AC长为半径画圆,交直线CD于C,P两点; 连接BP 线段BP就是所求作的线段 (1)运用直尺和圆规,依作法补全图形(保留作图痕迹); (2)完成下面的证明 证明:CDAB, ABP ABAC, 点B在A上 又点C,P都在A上
6、, BPCBAC( )(填推理的依据) ABPBAC 21(6分)如图,菱形ABCD的对角线AC,BD相交于点O,E是AD的中点,点F,G在AB上,EFAB,OGEF (1)求证:四边形OEFG是矩形; (2)若AD10,EF4,求OE和BG的长 22(5分)在平面直角坐标系xOy中,一次函数ykx+b(k0)的图象由函数yx的图象平移得到,且经过点(1,2) (1)求这个一次函数的解析式; (2)当x1时,对于x的每一个值,函数ymx(m0)的值大于一次函数ykx+b的值,干脆写出m的取值范围 23(6分)如图,AB为O的直径,C为BA延长线上一点,CD是O的切线,D为切点,OFAD于点E,
7、交CD于点F (1)求证:ADCAOF; (2)若sinC,BD8,求EF的长 24(6分)小云在学习过程中遇到一个函数y|x|(x2x+1)(x2) 下面是小云对其探究的过程,请补充完整: (1)当2x0时,对于函数y1|x|,即y1x,当2x0时,y1随x的增大而 ,且y10;对于函数y2x2x+1,当2x0时,y2随x的增大而 ,且y20;结合上述分析,进一步探究发觉,对于函数y,当2x0时,y随x的增大而 (2)当x0时,对于函数y,当x0时,y与x的几组对应值如下表: x 0 1 2 3 y 0 1 结合上表,进一步探究发觉,当x0时,y随x的增大而增大在平面直角坐标系xOy中,画出
8、当x0时的函数y的图象 (3)过点(0,m)(m0)作平行于x轴的直线l,结合(1)(2)的分析,解决问题:若直线l与函数y|x|(x2x+1)(x2)的图象有两个交点,则m的最大值是 25(5分)小云统计了自己所住小区5月1日至30日的厨余垃圾分出量(单位:千克),相关信息如下: a小云所住小区5月1日至30日的厨余垃圾分出量统计图: b小云所住小区5月1日至30日分时段的厨余垃圾分出量的平均数如下: 时段 1日至10日 11日至20日 21日至30日 平均数 100 170 250 (1)该小区5月1日至30日的厨余垃圾分出量的平均数约为 (结果取整数); (2)已知该小区4月的厨余垃圾分
9、出量的平均数为60,则该小区5月1日至30日的厨余垃圾分出量的平均数约为4月的 倍(结果保留小数点后一位); (3)记该小区5月1日至10日的厨余垃圾分出量的方差为s12,5月11日至20日的厨余垃圾分出量的方差为s22,5月21日至30日的厨余垃圾分出量的方差为s32干脆写出s12,s22,s32的大小关系 26(6分)在平面直角坐标系xOy中,M(x1,y1),N(x2,y2)为抛物线yax2+bx+c(a0)上随意两点,其中x1x2 (1)若抛物线的对称轴为x1,当x1,x2为何值时,y1y2c; (2)设抛物线的对称轴为xt,若对于x1+x23,都有y1y2,求t的取值范围 27(7分
10、)在ABC中,C90,ACBC,D是AB的中点E为直线AC上一动点,连接DE过点D作DFDE,交直线BC于点F,连接EF (1)如图1,当E是线段AC的中点时,设AEa,BFb,求EF的长(用含a,b的式子表示); (2)当点E在线段CA的延长线上时,依题意补全图2,用等式表示线段AE,EF,BF之间的数量关系,并证明 28(7分)在平面直角坐标系xOy中,O的半径为1,A,B为O外两点,AB1 给出如下定义:平移线段AB,得到O的弦AB(A,B分别为点A,B的对应点),线段AA长度的最小值称为线段AB到O的“平移距离” (1)如图,平移线段AB得到O的长度为1的弦P1P2和P3P4,则这两条
11、弦的位置关系是 ;在点P1,P2,P3,P4中,连接点A与点 的线段的长度等于线段AB到O的“平移距离”; (2)若点A,B都在直线yx+2上,记线段AB到O的“平移距离”为d1,求d1的最小值; (3)若点A的坐标为(2,),记线段AB到O的“平移距离”为d2,干脆写出d2的取值范围 2020年北京市中考数学试卷参考答案 一、选择题(本题共16分,每小题2分)第1-8题均有四个选项,符合题意的选项只有一个 1如图是某几何体的三视图,该几何体是() A圆柱 B圆椎 C三棱柱 D长方体 解:该几何体是长方体, 故选:D 22020年6月23日,北斗三号最终一颗全球组网卫星从西昌卫星放射中心放射升
12、空,6月30日胜利定点于距离地球36000公里的地球同步轨道将36000用科学记数法表示应为() A0.36105 B3.6105 C3.6104 D36103 解:360003.6104, 故选:C 3如图,AB和CD相交于点O,则下列结论正确的是() A12 B23 C14+5 D25 解:A1和2是对顶角, 12, 故A正确; B2A+3, 23, 故B错误; C14+5, 故错误; D24+5, 25; 故D错误; 故选:A 4下列图形中,既是中心对称图形也是轴对称图形的是() A B C D 解:A、既不是轴对称图形,也不是中心对称图形,故此选项不合题意; B、既不是轴对称图形,也不
13、是中心对称图形,故此选项不合题意; C、不是轴对称图形,是中心对称图形,不合题意; D、既是中心对称图形,又是轴对称图形,符合题意 故选:D 5正五边形的外角和为() A180 B360 C540 D720 解:随意多边形的外角和都是360, 故正五边形的外角和的度数为360 故选:B 6实数a在数轴上的对应点的位置如图所示,若实数b满意aba,则b的值可以是() A2 B1 C2 D3 解:因为1a2, 所以2a1, 因为aba, 所以b只能是1 故选:B 7不透亮的袋子中有两个小球,上面分别写着数字“1”,“2”,除数字外两个小球无其他差别从中随机摸出一个小球,记录其数字,放回并摇匀,再从
14、中随机摸出一个小球,记录其数字,那么两次记录的数字之和为3的概率是() A B C D 解:列表如下: 1 2 1 2 3 2 3 4 由表可知,共有4种等可能结果,其中两次记录的数字之和为3的有2种结果, 所以两次记录的数字之和为3的概率为, 故选:C 8有一个装有水的容器,如图所示,容器内的水面高度是10cm,现向容器内注水,并同时起先计时,在注水过程中,水面高度以每秒0.2cm的速度匀速增加,则容器注满水之前,容器内的水面高度与对应的注水时间满意的函数关系是() A正比例函数关系 B一次函数关系 C二次函数关系 D反比例函数关系 解:设容器内的水面高度为h,注水时间为t,依据题意得: h
15、0.2t+10, 容器注满水之前,容器内的水面高度与对应的注水时间满意的函数关系是一次函数关系 故选:B 二、填空题(本题共16分,每小题2分) 9若代数式有意义,则实数x的取值范围是x7 解:若代数式有意义, 则x70, 解得:x7 故答案为:x7 10已知关于x的方程x2+2x+k0有两个相等的实数根,则k的值是1 解:关于x的方程x2+2x+k0有两个相等的实数根, 2241k0, 解得:k1 故答案为:1 11写出一个比大且比小的整数2或3(答案不唯一) 解:12,34, 比大且比小的整数2或3(答案不唯一) 故答案为:2或3(答案不唯一) 12方程组的解为 解:, +得:4x8, 解
16、得:x2, 把x2代入得:y1, 则方程组的解为 故答案为: 13在平面直角坐标系xOy中,直线yx与双曲线y交于A,B两点若点A,B的纵坐标分别为y1,y2,则y1+y2的值为0 解:直线yx与双曲线y交于A,B两点, 联立方程组得:, 解得:, y1+y20, 故答案为:0 14如图,在ABC中,ABAC,点D在BC上(不与点B,C重合)只需添加一个条件即可证明ABDACD,这个条件可以是BDCD(写出一个即可) 解:ABAC, ABDACD, 添加BDCD, 在ABD与ACD中 , ABDACD(SAS), 故答案为:BDCD 15如图所示的网格是正方形网格,A,B,C,D是网格线交点,
17、则ABC的面积与ABD的面积的大小关系为:SABCSABD(填“”,“”或“”) 解:SABC244,SABD255113224, SABCSABD, 故答案为: 16如图是某剧场第一排座位分布图甲、乙、丙、丁四人购票,所购票数分别为2,3,4,5每人选座购票时,只购买第一排的座位相邻的票,同时使自己所选的座位号之和最小,假如按“甲、乙、丙、丁”的先后依次购票,那么甲购买1,2号座位的票,乙购买3,5,7号座位的票,丙选座购票后,丁无法购买到第一排座位的票若丙第一个购票,要使其他三人都能购买到第一排座位的票,写出一种满意条件的购票的先后依次丙、丁、甲、乙 解:依据题意,丙第一个购票,只能购买3
18、,1,2,4号票, 此时,3号左边有6个座位,4号右边有5个座位, 即甲、乙购买的票只要在丙的同侧,四个人购买的票全在第一排, 其次个丁可以购买3号左边的5个座位,另一侧的座位甲和乙购买, 即丙(3,1,2,4)、丁(5,7,9,11,13)、甲(6,8)、乙(10,12,14), 或丙(3,1,2,4)、丁(5,7,9,11,13)、乙(6,8,10)、甲(12,14); 其次个由甲或乙购买,此时,只能购买5,7号票,第三个购买的只能是丁,且只能购买6,8,10,12,14号票, 此时,四个人购买的票全在第一排, 即丙(3,1,2,4)、甲(5,7)、丁(6,8,10,12,14)、乙(9,
19、11,13), 或丙(3,1,2,4)、乙(5,7,9)、丁(6,8,10,12,14)、甲(11,13), 因此,第一个是丙购买票,丁只要不是最终一个购买票的人,都能使四个人购买的票全在第一排, 故答案为:丙、丁、甲、乙 三、解答题(本题共68分,第17-20题,每小题5分,第21题6分,第22题5分,第23-24题,每小题5分,第25题5分,第26题6分,第27-28题,每小题5分)解答应写出文字说明、演算步骤或证明过程 17(5分)计算:()1|2|6sin45 解:原式3+326 3+323 5 18(5分)解不等式组: 解:解不等式5x32x,得:x1, 解不等式,得:x2, 则不等
20、式组的解集为1x2 19(5分)已知5x2x10,求代数式(3x+2)(3x2)+x(x2)的值 解:(3x+2)(3x2)+x(x2) 9x24+x22x 10x22x4, 5x2x10, 5x2x1, 原式2(5x2x)42 20(5分)已知:如图,ABC为锐角三角形,ABAC,CDAB 求作:线段BP,使得点P在直线CD上,且ABPBAC 作法:以点A为圆心,AC长为半径画圆,交直线CD于C,P两点; 连接BP 线段BP就是所求作的线段 (1)运用直尺和圆规,依作法补全图形(保留作图痕迹); (2)完成下面的证明 证明:CDAB, ABPBPC ABAC, 点B在A上 又点C,P都在A上
21、, BPCBAC(同弧所对的圆周角等于圆心角的一半)(填推理的依据) ABPBAC 解:(1)如图,即为补全的图形; (2)证明:CDAB, ABPBPC ABAC, 点B在A上 又点C,P都在A上, BPCBAC(同弧所对的圆周角等于圆心角的一半), ABPBAC 故答案为:BPC,同弧所对的圆周角等于圆心角的一半 21(6分)如图,菱形ABCD的对角线AC,BD相交于点O,E是AD的中点,点F,G在AB上,EFAB,OGEF (1)求证:四边形OEFG是矩形; (2)若AD10,EF4,求OE和BG的长 解:(1)四边形ABCD是菱形, BDAC,DAOBAO, E是AD的中点, AEOE
22、AD, EAOAOE, AOEBAO, OEFG, OGEF, 四边形OEFG是平行四边形, EFAB, EFG90, 四边形OEFG是矩形; (2)四边形ABCD是菱形, BDAC,ABAD10, AOD90, E是AD的中点, OEAEAD5; 由(1)知,四边形OEFG是矩形, FGOE5, AE5,EF4, AF3, BGABAFFG10352 22(5分)在平面直角坐标系xOy中,一次函数ykx+b(k0)的图象由函数yx的图象平移得到,且经过点(1,2) (1)求这个一次函数的解析式; (2)当x1时,对于x的每一个值,函数ymx(m0)的值大于一次函数ykx+b的值,干脆写出m的
23、取值范围 解:(1)一次函数ykx+b(k0)的图象由直线yx平移得到, k1, 将点(1,2)代入yx+b, 得1+b2,解得b1, 一次函数的解析式为yx+1; (2)把点(1,2)代入ymx求得m2, 当x1时,对于x的每一个值,函数ymx(m0)的值大于一次函数yx+1的值, m2 23(6分)如图,AB为O的直径,C为BA延长线上一点,CD是O的切线,D为切点,OFAD于点E,交CD于点F (1)求证:ADCAOF; (2)若sinC,BD8,求EF的长 解:(1)连接OD, AB为O的直径, ADB90, ADBD, OFAD, OFBD, AOFB, CD是O的切线,D为切点,
24、CDO90, CDA+ADOADO+BDO90, CDABDO, ODOB, ODBB, AOFADC; (2)OFBD,AOOB, AEDE, OEBD84, sinC, 设ODx,OC3x, OBx, CB4x, OFBD, COFCBD, , , OF6, EFOFOE642 24(6分)小云在学习过程中遇到一个函数y|x|(x2x+1)(x2) 下面是小云对其探究的过程,请补充完整: (1)当2x0时,对于函数y1|x|,即y1x,当2x0时,y1随x的增大而减小,且y10;对于函数y2x2x+1,当2x0时,y2随x的增大而减小,且y20;结合上述分析,进一步探究发觉,对于函数y,当
25、2x0时,y随x的增大而减小 (2)当x0时,对于函数y,当x0时,y与x的几组对应值如下表: x 0 1 2 3 y 0 1 结合上表,进一步探究发觉,当x0时,y随x的增大而增大在平面直角坐标系xOy中,画出当x0时的函数y的图象 (3)过点(0,m)(m0)作平行于x轴的直线l,结合(1)(2)的分析,解决问题:若直线l与函数y|x|(x2x+1)(x2)的图象有两个交点,则m的最大值是 解:(1)当2x0时,对于函数y1|x|,即y1x,当2x0时,y1随x的增大而减小,且y10;对于函数y2x2x+1,当2x0时,y2随x的增大而减小,且y20;结合上述分析,进一步探究发觉,对于函数
26、y,当2x0时,y随x的增大而减小 故答案为:减小,减小,减小 (2)函数图象如图所示: (3)直线l与函数y|x|(x2x+1)(x2)的图象有两个交点, 视察图象可知,x2时,m的值最大,最大值m2(4+2+1), 故答案为 25(5分)小云统计了自己所住小区5月1日至30日的厨余垃圾分出量(单位:千克),相关信息如下: a小云所住小区5月1日至30日的厨余垃圾分出量统计图: b小云所住小区5月1日至30日分时段的厨余垃圾分出量的平均数如下: 时段 1日至10日 11日至20日 21日至30日 平均数 100 170 250 (1)该小区5月1日至30日的厨余垃圾分出量的平均数约为173(
27、结果取整数); (2)已知该小区4月的厨余垃圾分出量的平均数为60,则该小区5月1日至30日的厨余垃圾分出量的平均数约为4月的2.9倍(结果保留小数点后一位); (3)记该小区5月1日至10日的厨余垃圾分出量的方差为s12,5月11日至20日的厨余垃圾分出量的方差为s22,5月21日至30日的厨余垃圾分出量的方差为s32干脆写出s12,s22,s32的大小关系 解:(1)该小区5月1日至30日的厨余垃圾分出量的平均数约为173(千克), 故答案为:173; (2)该小区5月1日至30日的厨余垃圾分出量的平均数约为4月的2.9(倍), 故答案为:2.9; (3)由小云所住小区5月1日至30日的厨
28、余垃圾分出量统计图知,第1个10天的分出量最分散、第3个10天分出量最为集中, s12s22s32 26(6分)在平面直角坐标系xOy中,M(x1,y1),N(x2,y2)为抛物线yax2+bx+c(a0)上随意两点,其中x1x2 (1)若抛物线的对称轴为x1,当x1,x2为何值时,y1y2c; (2)设抛物线的对称轴为xt,若对于x1+x23,都有y1y2,求t的取值范围 解:(1)由题意y1y2c, x10, 对称轴x1, M,N关于x1对称, x22, x10,x22时,y1y2c (2)抛物线的对称轴为xt,若对于x1+x23,都有y1y2, 当x1+x23,且y1y2时,对称轴x,
29、视察图象可知满意条件的值为:t 27(7分)在ABC中,C90,ACBC,D是AB的中点E为直线AC上一动点,连接DE过点D作DFDE,交直线BC于点F,连接EF (1)如图1,当E是线段AC的中点时,设AEa,BFb,求EF的长(用含a,b的式子表示); (2)当点E在线段CA的延长线上时,依题意补全图2,用等式表示线段AE,EF,BF之间的数量关系,并证明 解:(1)D是AB的中点,E是线段AC的中点, DEBC,DEBC, ACB90, DEC90, DFDE, EDF90, 四边形CEDF是矩形, DECFBC, CFBFb, CEAEa, EF; (2)AE2+BF2EF2 证明:过
30、点B作BMAC,与ED的延长线交于点M,连接MF, 则AEDBMD,CBMACB90, D点是AB的中点, ADBD, 在ADE和BDM中, , ADEBDM(AAS), AEBM,DEDM, DFDE, EFMF, BM2+BF2MF2, AE2+BF2EF2 28(7分)在平面直角坐标系xOy中,O的半径为1,A,B为O外两点,AB1 给出如下定义:平移线段AB,得到O的弦AB(A,B分别为点A,B的对应点),线段AA长度的最小值称为线段AB到O的“平移距离” (1)如图,平移线段AB得到O的长度为1的弦P1P2和P3P4,则这两条弦的位置关系是P1P2P3P4;在点P1,P2,P3,P4
31、中,连接点A与点P3的线段的长度等于线段AB到O的“平移距离”; (2)若点A,B都在直线yx+2上,记线段AB到O的“平移距离”为d1,求d1的最小值; (3)若点A的坐标为(2,),记线段AB到O的“平移距离”为d2,干脆写出d2的取值范围 解:(1)如图,平移线段AB得到O的长度为1的弦P1P2和P3P4,则这两条弦的位置关系是P1P2P3P4;在点P1,P2,P3,P4中,连接点A与点P3的线段的长度等于线段AB到O的“平移距离” 故答案为:P1P2P3P4,P3 (2)如图1中,作等边OEF,点E在x轴上,OEEFOF1, 设直线yx+2交x轴于M,交y轴于N则M(2,0),N(0,2), 过点E作EHMN于H, OM2,ON2, tanNMO, NMO60, EHEMsin60, 视察图象可知,线段AB到O的“平移距离”为d1的最小值为 (3)如图2中,以A为圆心1为半径作A,作直线OA交O于M,交A于N, 以OA,AB为邻边构造平行四边形ABDO,以OD为边构造等边ODB,等边OBA,则ABAB,AA的长即为线段AB到O的“平移距离”, 当点A与M重合时,AA的值最小,最小值OAOM1, 当点B与N重合时,AA的长最大,如图3中,过点A作AHOA于H 由题意AH,AH3, AA的最大值, d2
限制150内