《函数与应用问题.docx》由会员分享,可在线阅读,更多相关《函数与应用问题.docx(16页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、函数与应用问题应用已知函数模型解决实际问题 3.2.2函数模型的应用实例第一课时应用已知函数模型解决实际问题 课前预习学案一预习目标:熟识几种常见的函数增长型二预习内容:阅读课本内容思索:主要的函数增长性有哪些三、提出怀疑同学们,通过你的自主学习,你还有哪些怀疑,请把它填在下面的表格中怀疑点怀疑内容课内探究学案一学习目标:能够找出简洁实际问题中的函数关系式,初步体会应用一次函数、二次函数模型解决实际问题.学习重点:运用一次函数、二次函数模型解决一些实际问题.学习难点:将实际问题转变为数学模型.二学习过程解决实际问题的步骤1)首先建立直角坐标系,画出散点图;2)依据散点图设想比较接近的可能的函数
2、模型:一次函数模型:二次函数模型:幂函数模型:指数函数模型:(0,)利用待定系数法求出各解析式,并对各模型进行分析评价,选出合适的函数模型;由于尝试的过程计算量较多,可同桌两个同学分工合作,最终再一起探讨确定. 例1某农家旅游公司有客房300间,每间日房租为20元,每天都客满.公司欲提高档次,并提高租金,假如每间客房日增加2元,客房出租数就会削减10间.若不考虑其他因素,旅社将房间租金提高到多少时,每天客房的租金总收入最高? 变式:某列火车众北京西站开往石家庄,全程277km,火车动身10min开出13km后,以120km/h匀速行驶.试写出火车行驶的总路程S与匀速行驶的时间t之间的关系式,并
3、求火车离开北京2h内行驶的路程. 例2要建一个容积为8m3,深为2m的长方体无盖水池,假如池底和池壁的造价每平方米分别为120元和80元,试求应当怎样设计,才能使水池总造价最低?并求此最低造价. 变式:某工厂今年1月、2月、3月生产某种产品的数量分别为1万件,1.2万件,1.3万件,为了估计以后每个月的产量,以这三个月的产品数量为依据用一个函数模拟该产品的月产量与月份的关系,模拟函数可以选用二次函数或函数.已知4月份该产品的产量为1.37万件,请问用以上哪个函数作为模拟函数较好,并说明理由. 课后练习与提高一选择题1.客车从甲地以60km/h的速度匀速行驶1小时到达乙地,在乙地停留了半小时,然
4、后以80km/h的速度匀速行驶1小时到达丙地,下列描述客车从甲地动身.经过乙地,最终到达丙地所经过的路程s与时间t之间关系的图象中,正确的是()A.B.C.D.2一种商品连续两次降价10%后,欲通过两次连续提价复原原价,则每次应提价()A10%B20%C5%D11.1%3今有一组试验数据如下:1.993.04.05.16.121.54.047.51218.01现打算用下列函数中一个近似地表示这些数据满意的规律,其中最接近的一个是()ABCD二填空题4.假设某商品靠广告销售的收入R与广告费A之间满意关系R=,那么广告效应为,当A=时,取得最大广告效应.5某种细菌在培育过程中,每20分钟分裂一次(
5、一个分裂为2个)经过3小时后,这种细菌可由1个分裂成_个三解答题6.某市居民自来水收费标准如下:每户每月用水不超过4吨时,每吨为1.80元,当用水超过4吨时,超过部分每吨3.00元,某月甲、乙两户共交水费y元,已知甲、乙两用户该月用水量分别为5x,3x吨.?(1)求y关于x的函数;?(2)若甲、乙两户该月共交水费26.4元,分别求出甲、乙两户该月的用水量和水费.? 参考答案 函数的应用 2.3函数的应用()一学习目标:进一步巩固函数模型在实际中的应用;驾驭应用题的解答步骤;驾驭数学建模的基本思路;二上节回顾:函数模型:数学建模步骤:三典例分析:例1:(见课本第67页例4)变式训练:南方某地市场
6、信息中心为了分析本地区蔬菜的供求状况,通过调查得到家种野菜“芦蒿”的市场需求量和供应量数据(见下表)需求量吨403837.13632.830价值千元/吨22.42.62.83.44 价值千元/吨22.53.24.4655.3供应量吨293236.340.944.647 (1)试写出描述芦蒿市场需求量关于价格的近似函数关系式;(2)试依据这些信息,探求市场对芦蒿的供求平衡量(需求量与供应量相等,又称供求平衡)(近似到吨). 例2为了尽快改善职工住房困难,激励个人购房和积累建房公基金,确定住房的职工必需按基本工资的凹凸交纳建房公积金,假设方法如下表:每月工资公积金100元以下不交纳100元至200
7、元交纳超过100元部分的5200元至300元100元至200元部分交纳5,超过200元部分交纳10300元以上100元至200元部分交纳5,200元至300元部分交纳10,300元以上部分交纳15设职工每月工资为元,交纳公积金后实得工资为元,求与之间的关系式 变式练习:国务院关于修改中华人民共和国个人所得税法实施条例的确定已于2022年3月1日起施行,个人所得税率表示如下:级数全月应纳税所得额税率1不超过500元的部分5%2超过500元至2000元的部分10%3超过2000至5000元的部分15%9超过10000元的部分45%注:本表所称全月应纳税所得额每月改入额减去2000元的余额.若个人月
8、收入额为元,应缴税费为元,当时,写出与之间的函数关系式.例3向高为的水瓶注水,注满为止,假如注水量与水深的函数亲系的图象如图所示,那么水瓶的形态是() 变式练习:如右图高为的圆形被高度为的水平线截得阴影面积为,则的图象大致是() 限时训练:1甲、乙两学生在操场上煅炼身体,操场一圈300米,甲学生以速度跑第一圈,然后以速度走完其次圈,而乙学生以速度走完第一圈,然后以速度跑其次圈,则能反映出两人时间与路程的函数图象是(粗线是甲的图象)()2某工厂八年来某种产品总产量与时间(年)的函数关系如右图,下列四种说法:1前三年中产量增长速度越来越快;2前三年中产量增长速度越来越慢;3第三年后,这种产品停止生
9、产;4第三年后,年产量保持不变其中说法正确的是3如下图所示,向高为H的水瓶A、B、C、D同时以等速注水,注满为止.()若水量V与水深的函数图象是下图的(),则水瓶的形态是;()若水深与注水时间的函数图象是下图的(),则水瓶的形态是;()若注水时间与水深的函数图象是下图的(),则水瓶的形态是;()若水量V与注水时间的函数的图象是下图中的(),则水瓶的形态是 4某市一种出租车标价为1.2元/,但事实上的收费标准如下:最起先4内不管车行驶路程多少,均收费10元(即起步费),4后到15之间,每公里收费1.20元,15km后每公里再加收50%,即每公里1.80元。试写出收费金额与打车路程之间的函数关系(
10、其他因素产生的费用不计) 5.机车起先行驶时,油箱中有油4升,假如每小时耗油0.5升,那么油箱中余油(升)与它工作的时间(小时)之间的函数关系的图象是() 6下图中的折线为甲地向乙地打长途电话所需付电话费(元)与通话时间(分钟)之间的函数关系图象.当时,该图象的解析式为_;从图象可知,通话2分钟需付电话费_元;通话7分钟需付电话费_元. 7如图所示,一动点P从边长为1的正方形ABCD的顶点A动身,顺次经过B、C、D点再回到A点,设x表示P点的行程,y表示线段PA的长,求出y关于x的函数关系式. 8某公司在甲、乙两地销售一种品牌车,利润(单位:万元)分别为,其中为销售量(单位:辆),若该公司在这
11、两地共销售15辆车,则能获得的最大利润为()(A)45.606万元(B)45.6万元()45.56万元(D)45.51万元某公司生产一种电子仪器的固定成本为20000元,每生产一台仪器需增加投入100元,已知总收益满意函数:,其中是仪器的月产量()将利润表示为月产量的函数;()当月产量为何值时,公司所获利润最大?最大利润是多少元?(总收入总成本利润) 1.6三角函数模型的简洁应用-潮汐问题 1.6三角函数模型的简洁应用-潮汐问题 教学目标: 1、能正确分析收集到的数据,选择恰当的函数模型刻画数据所蕴含的规律,能依据问题的实际意义,利用模型说明有关实际问题,为决策供应依据。 2、巩固三角函数的有
12、关学问,会初步利用图象解三角不等式,巩固二分法求相应方程近似解。 3、培育学生数学应用意识;提高学生利用信息技术处理一些实际计算的实力。 教学重点: 用三角函数模型刻画潮汐改变规律,用函数思想解决具有周期改变的实际问题 教学难点: 对问题实际意义的数学说明,从实际问题中抽象出三角函数模型。 教学媒体:几何画板 教学流程: 给出出港口水深数据,提出问题 依据散点图形特征,选择适当的函数拟合 求解函数模型 利用函数模型解决实际问题 反思解题过程,总结解题方法,提炼数学思想 教学过程: 1情景展示,新课导入 2问题提出,探究解决 【师】若干年后,假如在座的各位有机会当上船长的话,当你的船只要到某个港
13、口去,你作为船长,你希望知道关于那个港口的一些什么状况? 【生】水深状况。 【师】是的,我们要到一个生疏的港口时,是特别想得到有关那个港口的水深与时间的对应关系。 请同学们看下面这个问题。 问题探究1:如图所示,下面是钱塘江某个码头在今年春季每天的时间与水深的关系表: 时间 0.00 3.00 6.00 9.00 12.00 15.00 18.00 21.00 24.00 水深 5.0 7.5 5.0 2.5 5.0 7.5 5.0 2.5 5.0请同学们细致视察表格中的数据,你能够从中得到一些什么信息? 小组合作发觉,代表发言。可能结果: 1)水深的最大值是7.5米,最小值是2.5米。 2)
14、水的深度起先由5.0米增加到7.5米,后渐渐削减始终削减到2.5,又起先渐渐变深,增加到7.5米后,又起先削减。 3)水深改变并不是杂乱无章,而是呈现一种周期性改变规律。 4)学生活动:作图更加直观明白这种周期性改变规律。(探讨数据的两种形式) 平安水深,即: , 探讨求解方法:用代数的方法?几何的角度?(电脑作图并呈现) 通过图象可以看出,当快要到P时刻的时候,货船就要停止卸货,驶向深水区。那么P点的坐标如何求得呢?(学生思索,探讨,沟通)求P点横坐标即解方程 数形结合,二分法求近似解: 由图得点P点横坐标在6,7,故我们只须要算出6,6.5,7三个时刻的平安水深与实际水深的数值表就可以回答
15、上面的问题。 时间 实际水深 平安水深 是否平安 60 5米 43米 平安 65 42米 41米 较平安 70 38米 40米 危急货船应当在6时30分左右驶离港口。(可能有的同学有些异议,可以探讨) 从这这个问题可以看出,假如有时候时间限制不当,货船在卸货的过程中,就会出现货还没有卸完,不得已要短暂驶离港口,进入深水区,等水位上涨后在驶回来。这样对公司来说就会造成才力、物力上的巨大奢侈?那该怎么来做呢?(学生探讨) 可以加快卸货速度,也就是加快平安深度下降速度。 问题探究4:若船的吃水深度为4米,平安间隙为1.5米,该船在2:00起先卸货,货物卸空后吃水深度为2米,为了保证进入码头后一次性卸
16、空货物,又能平安驶离码头,那么每小时吃水深度至少要以多少速度削减?-探究3的变式(学生课后探究) 3课时小结,相识深化 (师生一起归纳) 3-1回顾整个探究过程,经验了第一阶段:收集数据-画散点图 其次阶段:依据图象特征-选模、求模、验模 第三阶段:函数模型应用 3-2在整个探究过程,我们用到数学常见的一些思想方法: (1)对实际问题处理过程是,首先是挖掘其中的数学本质,将实际问题转化为数学问题;体现了数学中的转化思想; (2)在对一些数据处理的过程用到了估算的思想; (3)在用代数方法处理困难的一些题目的解决中,用到了数形结合的思想; (4)在方程的求解过程中,用到了算法中“二分法”思想。
17、4老师演示激发学生思索并进一步探究:生活中哪些现象与三角函数模型有关?-周期性 5作业布置,延时探究 4-1电视台的不同栏目播出的时间周期是不同的,有的每天播出,有的隔天播出,有的一个星期播出一次。请查阅当地的电视节目预报,统计不同栏目的播出周期。 4-2请调查我们杭州某个地区的每天的用电状况,制定一项“消蜂平谷”的电价方案。 4-3一个城市所在的经度和纬度是如何影响日出和日落的时间的?收集其他有关数据,并供应理论证据支持你的结论。 函数的应用举例 函数的应用举例 教学目标 1.能够运用函数的性质,指数函数,对数函数的性质解决某些简洁的实际问题(1)能通过阅读理解读懂题目中文字叙述所反映的实际
18、背景,领悟其中的数学本,弄清题中出现的量及其数学含义(2)能依据实际问题的详细背景,进行数学化设计,将实际问题转化为数学问题,并调动函数的相关性质解决问题(3)能处理有关几何问题,增长率的问题,和物理方面的实际问题2.通过联系实际的引入问题和解决带有实际意义的某些问题,培育学生分析问题,解决问题的实力和运用数学的意识,也体现了函数学问的应用价值,也渗透了训练的价值3.通过对实际问题的探讨解决,渗透了数学建模的思想提高了学生学习数学的爱好,使学生对函数思想等有了进一步的了解 教学建议 教材分析(1)本小节内容是全章学问的综合应用这一节的出现体现了强化应用意识的要求,让学生能把数学学问应用到生产,
19、生活的实际中去,形成应用数学的意识所以培育学生分析解决问题的实力和运用数学的意识是本小节的重点,依据实际问题建立数学模型是本小节的难点(2)在解决实际问题过程中常用到函数的学问有:函数的概念,函数解析式的确定,指数函数的概念及其性质,对数概念及其性质,和二次函数的概念和性质在方法上涉及到换元法,配方法,方程的思想,数形结合等重要的思方法事业本节的学习,既是对学问的复习,也是对方法和思想的再相识 教法建议(1)本节中处理的均为应用问题,在题目的叙述表达上均较长,其中要分析把握的信息量较多事业处理这种大信息量的阅读题首先要在阅读上下功夫,找出关键语言,关键数据,特殊是对实际问题中数学变量的隐含限制
20、条件的提取尤为重要(2)对于应用问题的处理,其次步应依据各个量的关系,进行数学化设计建立目标函数,将实际问题通过分析概括,抽象为数学问题,最终是用数学方法将其化为常规的函数问题(或其它数学问题)解决此类题目一般都是分为这样三步进行(3)在现阶段能处理的应用问题一般多为几何问题,利润最大,费用最省问题,增长率的问题及物理方面的问题在选题时应以以上几方面问题为主 教学设计示例 函数初步应用 教学目标 1.能够运用常见函数的性质及平面几何有关学问解决某些简洁的实际问题 2.通过对实际问题的探讨,培育学生分析问题,解决问题的实力 3.通过把实际问题向数学问题的转化,渗透数学建模的思想,提高学生用数学的
21、意识,及学习数学的爱好 教学重点,难点 重点是应用问题的阅读分析和解决 难点是依据实际问题建立相应的数学模型 教学方法 师生互动式 教学用具 投影仪 教学过程 一.提出问题 数学来自生活,又应用于生活和生产实践而实际问题中又蕴涵着丰富的数学学问,数学思想与方法如刚刚学过的函数内容在实际生活中就有着广泛的应用今日我们就一起来探讨几个应用问题 问题一:如图,是边长为2的正三角形,这个三角形在直线的左方被截得图形的面积为,求函数的解析式及定义域(板书) (作为应用问题由于学生是初次探讨,所以可先选择以数学学问为背景的应用题,让学生探讨) 首先由学生自己阅读题目,老师可利用计算机让直线运动起来,视察三
22、角形的改变,由学生提出探讨方法由学生说出由于图形的不同计算方法也不同,应分类探讨分界点应在,再由另一个学生说出面积的计算方法 当时,(采纳干脆计算的方法) 当时, (板书) (计算其次段时,可以再画一个相应的图形,如图) 综上,有, 此时可以问学生这是什么函数?定义域应怎样计算?让学生明确是分段函数的前提条件下,求出定义域为(板书) 问题解决后可由老师简洁小结一下探讨过程中的主要步骤(1)阅读理解;(2)建立目标函数;(3)按要求解决数学问题 下面我们一起看其次个问题 问题二:某工厂制定了从1999年底起先到2022年底期间的生产总值持续增长的两个三年安排,预料生产总值年平均增长率为,则其次个
23、三年安排生产总值与第一个三年安排生产总值相比,增长率为多少?(投影仪打出) 首先让学生搞清增长率的含义是两个三年总产值之间的关系问题,所以问题转化为已知年增长率为,分别求两个三年安排的总产值 设1999年总产值为,第一步让学生依次说出2000年到2022年的年总产值,它们分别为: 2000年2022年 2022年2022年 2022年2022年(板书) 其次步再让学生分别算出第一个三年总产值和其次个三年总产值 =+ = =+ =(板书) 第三步计算增长率 (板书) 计算后老师可以让学生总结一下关于增长率问题的探讨应留意的问题最终老师再指出关于增长率的问题常常构建的数学模型为,其中为基数,为增长
24、率,为时间所以常常会用到指数函数有关学问加以解决 总结后再提出最终一个问题 问题三:一商场批发某种商品的进价为每个80元,零售价为每个100元,为了促进销售,拟采纳买一个这种商品赠送一个小礼品的方法,试验表明,礼品价格为1元时,销售量可增加10%,且在肯定范围内礼品价格每增加1元销售量就可增加10%设未赠送礼品时的销售量为件 (1)写出礼品价值为元时,所获利润(元)关于的函数关系式; (2)请你设计礼品价值,以使商场获得最大利润(为节约时间,应用题都可以用投影仪打出) 题目出来后要求学生仔细读题,找出关键量再引导学生找出与利润相关的量包括销售量,每件的利润及礼品价值等让学生思索后,列出销售量的
25、式子再找学生说出每件商品的利润的表达式,完成第一问的列式计算 解:(板书) 完成第一问后让学生视察解析式的特点,提出如何求这个函数的最大值(此出最值问题是学生比较生疏的,方法也是学生不熟识的)所以学生遇到思维障碍,老师可适当提示,如可以先详细计算几个值看一看能否发觉规律,若看不出规律,能否把详细计算改进一下,再计算中能体现它是最大?也就是让学生意识到应用最大值的概念来解决问题最终将问题概括为两个不等式的求解即 (2)若使利润最大应满意 同时成马上解得 当或时,有最大值 由于这是实际应用问题,在答案的选择上应考虑价值为9元的礼品赠送,可获的最大利润 三小结 通过以上三个应用问题的探讨,要学生了解解决应用问题的详细步骤及相应的留意事项 四作业略 五板书设计 29函数初步应用 问题一: 解: 问题二 分析 问题三 分析 小结: 第16页 共16页第 16 页 共 16 页第 16 页 共 16 页第 16 页 共 16 页第 16 页 共 16 页第 16 页 共 16 页第 16 页 共 16 页第 16 页 共 16 页第 16 页 共 16 页第 16 页 共 16 页第 16 页 共 16 页
限制150内