高二数学《直线与方程》知识点复习.docx
《高二数学《直线与方程》知识点复习.docx》由会员分享,可在线阅读,更多相关《高二数学《直线与方程》知识点复习.docx(10页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、高二数学直线与方程知识点复习高二数学下册圆的方程学问点复习 高二数学下册圆的方程学问点复习 圆的方程定义: 圆的标准方程(x-a)2+(y-b)2=r2中,有三个参数a、b、r,即圆心坐标为(a,b),只要求出a、b、r,这时圆的方程就被确定,因此确定圆方程,须三个独立条件,其中圆心坐标是圆的定位条件,半径是圆的定形条件。 直线和圆的位置关系: 1.直线和圆位置关系的判定方法一是方程的观点,即把圆的方程和直线的方程联立成方程组,利用判别式来探讨位置关系. 0,直线和圆相交.=0,直线和圆相切.0,直线和圆相离. 方法二是几何的观点,即把圆心到直线的距离d和半径R的大小加以比较. dR,直线和圆
2、相交.d=R,直线和圆相切.dR,直线和圆相离. 2.直线和圆相切,这类问题主要是求圆的切线方程.求圆的切线方程主要可分为已知斜率k或已知直线上一点两种状况,而已知直线上一点又可分为已知圆上一点和圆外一点两种状况. 3.直线和圆相交,这类问题主要是求弦长以及弦的中点问题. 切线的性质 圆心到切线的距离等于圆的半径; 过切点的半径垂直于切线; 经过圆心,与切线垂直的直线必经过切点; 经过切点,与切线垂直的直线必经过圆心; 当一条直线满意 (1)过圆心; (2)过切点; (3)垂直于切线三特性质中的两个时,第三特性质也满意. 切线的判定定理 经过半径的外端点并且垂直于这条半径的直线是圆的切线. 切
3、线长定理 从圆外一点作圆的两条切线,两切线长相等,圆心与这一点的连线平分两条切线的夹角 圆锥曲线性质: 一、圆锥曲线的定义 1.椭圆:到两个定点的距离之和等于定长(定长大于两个定点间的距离)的动点的轨迹叫做椭圆. 2.双曲线:到两个定点的距离的差的肯定值为定值(定值小于两个定点的距离)的动点轨迹叫做双曲线.即. 3.圆锥曲线的统肯定义:到定点的距离与到定直线的距离的比e是常数的点的轨迹叫做圆锥曲线.当01时为双曲线. 二、圆锥曲线的方程 1.椭圆:+=1(ab0)或+=1(ab0)(其中,a2=b2+c2) 2.双曲线:-=1(a0,b0)或-=1(a0,b0)(其中,c2=a2+b2) 3.
4、抛物线:y2=2px(p0),x2=2py(p0) 三、圆锥曲线的性质 1.椭圆:+=1(ab0) (1)范围:|x|a,|y|b(2)顶点:(a,0),(0,b)(3)焦点:(c,0)(4)离心率:e=(0,1)(5)准线:x= 2.双曲线:-=1(a0,b0)(1)范围:|x|a,yR(2)顶点:(a,0)(3)焦点:(c,0)(4)离心率:e=(1,+)(5)准线:x=(6)渐近线:y=x 3.抛物线:y2=2px(p0)(1)范围:x0,yR(2)顶点:(0,0)(3)焦点:(,0)(4)离心率:e=1(5)准线:x=- 练习题: 1、若圆(x-a)2+(y-b)2=r2过原点,则()
5、 A.a2-b2=0B.a2+b2=r2 C.a2+b2+r2=0D.a=0,b=0 【解析】选B.因为圆过原点,所以(0,0)满意方程, 即(0-a)2+(0-b)2=r2, 所以a2+b2=r2. 2、已知定点A(0,-4),O为坐标原点,以OA为直径的圆C的方程是() A.(x+2)2+y2=4 B.(x+2)2+y2=16 C.x2+(y+2)2=4 D.x2+(y+2)2=16 【解析】选C.由题意知,圆心坐标为(0,-2),半径r=2,其方程为x2+(y+2)2=4. 3、圆(x+2)2+y2=5关于原点(0,0)对称的圆的方程是() A.(x-2)2+y2=5 B.x2+(y-2
6、)2=5 C.(x+2)2+(y+2)2=25 D.x2+(y+2)2=25 【解析】选A.圆心(-2,0)关于原点对称的点为(2,0),所以所求圆的方程为(x-2)2+y2=5. 高二数学下册曲线和方程学问点复习 高二数学下册曲线和方程学问点复习 1定义 在选定的直角坐标系下,假如某曲线C上的点与一个二元方程f(x,y)=0的实数解建立了如下关系: (1)曲线C上的点的坐标都是方程f(x,y)=0的解(一点不杂); (2)以方程f(x,y)=0的解为坐标的点都是曲线C上的点(一点不漏) 这时称方程f(x,y)=0为曲线C的方程;曲线C为方程f(x,y)=0的曲线(图形) 设P=具有某种性质(
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 直线与方程 数学 直线 方程 知识点 复习
限制150内