2022年中心对称和中心对称图形-教学教案.docx
《2022年中心对称和中心对称图形-教学教案.docx》由会员分享,可在线阅读,更多相关《2022年中心对称和中心对称图形-教学教案.docx(8页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、2022年中心对称和中心对称图形教学教案教学建议 学问归纳1中心对称把一个图形围着某一点旋转 ,假如它能够与另一个图形重合,那么就说这两个图形关于这个点对称,这个点叫做对称中心,两个图形关于点对称也称中心对称,这两个图形中的对应点,叫做关于中心的对称点中心对称的两个图形具有如下性质:(1)关于中心对称的两个图形全等;(2)关于中心对称的两个图形,对称点的连线都过对称中心,并且被对称中心平分推断两个图形成中心对称的方法是:假如两个图形的对应点连线都经过某一点,并且被这一点平分,那么这两个图形关于这一点对称2中心对称图形把一个图形绕某一点旋转 ,假如旋转后的图形能够和原来的图形相互重合,那么这个图
2、形叫做中心对称图形,这个点就是它的对称中心矩形、菱形、正方形、平行四边形都是中心对称图形,对角钱的交点就是它们的对称中心;圆是中心对称图形,圆心是对称中心;线段也是中心对称图形,线段中点就是它的对称中心学问结构重点、难点分析:本节课的重点是中心对称的概念、性质和作已知点关于某点的对称点.因为概念是推导三特性质的主要依据、性质是今后解决有关问题的理论依据;而作已知点关于某个点的对称点又是作中心对称图形的关键.本节课的难点是中心对称与中心对称图形之间的联系和区分.从概念角度来说,中心对称图形和中心对称是两个不同而又紧密相联的概念.从学生角度来讲,在学习轴对称时,有相当一部分学生对轴对称和轴对称图形
3、的概念理解上出现误点.因此本节课的难点是中心对称与中心对称图形之间的联系和区分.教法建议本节内容和生活结合较多,新课导入可考虑以下方法:(1)从相像概念引入:中心对称概念与轴对称概念比较相像,中心对称图形与轴对称图形比较相像,可从轴对称类比引入,(2)从汉字引入:有很多汉字都是中心对称图形,如“田”、“日”、“曰”、“中”、“申”、“王”,等等,可从汉字引入,(3)从生活实例引入:生活中有很多中心对称实例和中心对称图形,如飞机的螺旋桨,风车的风轮,纽结,雪花,等等,可从生活实例引入,(4)从商标引入:各公司、企业的商标中有很多中心对称实例和中心对称图形,如联想,联合证券,湘财证券,中国工商银行
4、,中国银行,等等,可从这些商标引入,(5)从车标引入:各品牌汽车的车标中有很多都是中心对称图形,如奥迪,韩国现代,本田,富康,欧宝,宝马,等等,可从车标引入,(6)从几何图形引入:学习过的很多图形都是中心对称图形,如圆,平行四边形,矩形,菱形,正方形,等等,可从几何图形引入,(7)从艺术品引入:艺术品中有很多都是呈中心对称或是中心对称图形,如下图,可从艺术品引入。 教学设计示例教学目标1知道中心对称的概念,能说出中心对称的定义和关于中心对称的两个图形的性质。2会依据关于中心对称图形的性质定理2的逆定理来判定两个图形关于一点对称;会画与已知图形关于一点成中心对称的图形。此外,通过复习图形轴对称,
5、并与中心对称比较,渗透类比的思想方法;用运动的观点视察和相识图形,渗透旋转变换的思想。引导性材料想一想:怎样的两个图形叫做关于某直线成轴对称?成轴对称的两个图形有什么性质?(帮助学生复习轴对称的有关学问,为中心对称教学作打算) 画一画:如图4.7-1(1),已知点P和直线L,画出点P关于直线L的对称点P;如图4.7-1(2),已知线段MN和直线a,画出线段MN关于直线a的对称线段MN。(通过画图形进一步巩固和加深对轴对称的相识)上述问题由学生回答,老师作必要的提示,并归纳总结成下表: 轴对称 定义三要点 123有一条对称轴-直线图形沿轴对折,即翻转180度翻转后与另一图形重合 性质 123两个
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 2022 年中 对称 中心对称 图形 教学 教案
限制150内