高三数学上册《等差数列》教学设计.docx
《高三数学上册《等差数列》教学设计.docx》由会员分享,可在线阅读,更多相关《高三数学上册《等差数列》教学设计.docx(58页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、高三数学上册等差数列教学设计高三数学等差数列学案分析 高三数学等差数列学案分析 课题:2.2等差数列授课类型:新授课(第1课时)教学目标学问与技能:了解公差的概念,明确一个数列是等差数列的限定条件,能依据定义推断一个数列是等差数列;正确相识运用等差数列的各种表示法,能敏捷运用通项公式求等差数列的首项、公差、项数、指定的项过程与方法:经验等差数列的简洁产生过程和应用等差数列的基本学问解决问题的过程。情感看法与价值观:通过等差数列概念的归纳概括,培育学生的视察、分析资料的实力,主动思维,追求新知的创新意识。教学重点等差数列的概念,等差数列的通项公式。教学难点等差数列的性质教学过程.课题导入创设情境
2、上两节课我们学习了数列的定义及给出数列和表示的数列的几种方法列举法、通项公式、递推公式、图象法.这些方法从不同的角度反映数列的特点。下面我们看这样一些例子。课本P41页的4个例子:0,5,10,15,20,25,48,53,58,6318,15.5,13,10.5,8,5.510072,10144,10216,10288,10366视察:请同学们细致视察一下,看看以上四个数列有什么共同特征??共同特征:从其次项起,每一项与它前面一项的差等于同一个常数(即等差);(误:每相邻两项的差相等应指明作差的依次是后项减前项),我们给具有这种特征的数列一个名字等差数列.讲授新课1等差数列:一般地,假如一个
3、数列从其次项起,每一项与它前一项的差等于同一个常数,这个数列就叫做等差数列,这个常数就叫做等差数列的公差(常用字母“d”表示)。公差d肯定是由后项减前项所得,而不能用前项减后项来求;对于数列,若=d(与n无关的数或字母),n2,nN,则此数列是等差数列,d为公差。思索:数列、的通项公式存在吗?假如存在,分别是什么?2等差数列的通项公式:【或】等差数列定义是由一数列相邻两项之间关系而得若一等差数列的首项是,公差是d,则据其定义可得:即:即:即:由此归纳等差数列的通项公式可得:已知一数列为等差数列,则只要知其首项和公差d,便可求得其通项。由上述关系还可得:即:则:=即等差数列的其次通项公式d=范例
4、讲解例1求等差数列8,5,2的第20项-401是不是等差数列-5,-9,-13的项?假如是,是第几项?解:由n=20,得由得数列通项公式为:由题意可知,本题是要回答是否存在正整数n,使得成立解之得n=100,即-401是这个数列的第100项例3已知数列的通项公式,其中、是常数,那么这个数列是否肯定是等差数列?若是,首项与公差分别是什么?分析:由等差数列的定义,要判定是不是等差数列,只要看(n2)是不是一个与n无关的常数。解:当n2时,(取数列中的随意相邻两项与(n2)为常数是等差数列,首项,公差为p。注:若p=0,则是公差为0的等差数列,即为常数列q,q,q, 等差数列3.1等差数列(其次课时
5、,等差数列的性质)教学目的:1.明确等差中项的概念.2.进一步娴熟驾驭等差数列的通项公式及推导公式.教学重点:等差数列的定义、通项公式、性质的理解与应用教学难点:敏捷应用等差数列的定义及性质解决一些相关问题一、复习引入1等差数列的定义;2等差数列的通项公式:(1),(2),(3)3有几种方法可以计算公差dd=d=d=二、讲解新课:问题:假如在与中间插入一个数A,使,A,成等差数列数列,那么A应满意什么条件?由定义得A-=-A,即:反之,若,则A-=-A由此可可得:成等差数列。也就是说,A=是a,A,b成等差数列的充要条件定义:若,A,成等差数列,那么A叫做与的等差中项。不难发觉,在一个等差数列
6、中,从第2项起,每一项(有穷数列的末项除外)都是它的前一项与后一项的等差中项。如数列:1,3,5,7,9,11,13中5是3和7的等差中项,1和9的等差中项。9是7和11的等差中项,5和13的等差中项。留意到,由此揣测:性质:在等差数列中,若m+n=p+q,则,即m+n=p+q(m,n,p,qN)(以上结论由学生证明)但通常由推不出m+n=p+q,特例:等差数列an中,与首尾“等距离”的随意两项和相等.即三、例题例1在等差数列中,若+=9,=7,求,.分析:要求一个数列的某项,通常状况下是先求其通项公式,而要求通项公式,必需知道这个数列中的至少一项和公差,或者知道这个数列的随意两项(知道随意两
7、项就知道公差),本题中,只已知一项,和另一个双项关系式,想到从这双项关系式+=+=9入手(答案:=2,=32)例2等差数列中,+=12,且=80.求通项分析:要求通项,仍旧是先求公差和其中至少一项的问题。而已知两个条件均是三项复合关系式,欲求某项必需消元(项)或再构造一个等式出来。(答案:=10+3(n1)=3n13或=23(n1)=3n+5)例3在等差数列中,已知450,求及前9项和().提示:由双项关系式:2,2及450,得5450,易得2180.()()()()9810.例4已知a、b、c的倒数成等差数列,那么,a2(b+c),b2(c+a),c2(a+b)是否成等差数列。分析:将a、b
8、、c的成等差数列转化为a+c=2b,再探究a2(b+c)+b2(c+a)=c2(a+b),即a2(b+c)+b2(c+a)-c2(a+b)=0是否成立.例5已知两个等差数列5,8,11,和3,7,11都有100项,问它们有多少公共项.分析:两个等差数列的相同的项按原来的前后次序组成一个等差数列,且公差为原来两个公差的最小公倍数.(答案:25个公共项)四、练习:1.在等差数列中,已知,求首项与公差2.在等差数列中,若求3.在等差数列中若,求五、作业:课本:P114习题3.27.10,11.精析精练P117智能达标训练等差数列学案 2等差数列?第1课时等差数列的概念及通项公式知能目标解读1.通过实
9、例,理解等差数列的概念,并会用等差数列的概念推断一个数列是否为等差数列.2.探究并驾驭等差数列的通项公式的求法.3.体会等差数列与一次函数的关系,能用函数的观点解决等差数列问题.4.驾驭等差中项的定义,并能运用它们解决问题.5.能用等差数列的学问解决一些实际应用问题.重点难点点拨重点:等差数列的概念.难点:等差数列的通项公式及其运用.学习方法指导1.等差数列的定义(1)关于等差数列定义的理解,关键留意以下几个方面:假如一个数列,不是从第2项起,而是从第3项起或第4项起,每一项与它的前一项的差是同一个常数,那么这个数列不是等差数列.一个数列从第2项起,每一项与其前一项的差尽管等于常数,这个数列也
10、不肯定是等差数列,因为这些常数不肯定相同,当这些常数不同时,此数列不是等差数列.求公差时,要留意相邻两项相减的依次.d=an+1-an(nN+)或者d=an-an-1(nN+且n2).(2)如何证明一个数列是等差数列?要证明一个数列是等差数列,依据等差数列的定义,只需证明对随意正整数n,an+1-an是同一个常数(或an-an-1(n1)是同一个常数).这里所说的常数是指一个与n无关的常数.留意:推断一个数列是等差数列的定义式:an+1-an=d(d为常数).若证明一个数列不是等差数列,可举一个特例进行否定,也可以证明an+1-an或an-an-1(n1)不是常数,而是一个与n有关的变数即可.
11、2.等差数列的通项公式(1)通项公式的推导常用方法:方法一(叠加法):an是等差数列,an-an-1=d,an-1-an-2=d,an-2-an-3=d,a3-a2=d,a2-a1=d.将以上各式相加得:an-a1=(n-1)d,an=a1+(n-1)d.方法二(迭代法):an是等差数列,an=an-1+d=an-2+d+d=an-2+2d=an-3+3d=a1+(n-1)d.即an=a1+(n-1)d.方法三(逐差法):an是等差数列,则有an=(an-an-1)+(an-1-an-2)+(an-2-an-3)+(a2-a1)+a1=a1+(n-1)d.留意:等差数列通项公式的推导方法是以后
12、解决数列题的常用方法,应留意体会并应用.(2)通项公式的变形公式在等差数列an中,若m,nN+,则an=am+(n-m)d.推导如下:对随意的m,nN+,在等差数列中,有am=a1+(m-1)dan=a1+(n-1)d由-得an-am=(n-m)d,an=am+(n-m)d.留意:将等差数列的通项公式an=a1+(n-1)d变形整理可得an=dn+a1-d,从函数角度来看,an=dn+(a1-d)是关于n的一次函数(d0时)或常数函数(d=0时),其图像是一条射线上一些间距相等的点,其中公差d是该射线所在直线的斜率,从上面的变形公式可以知道,d=(nm).(3)通项公式的应用利用通项公式可以求
13、出首项与公差;可以由首项与公差求出等差数列中的随意一项;若某数为等差数列中的一项,可以利用通项公式求出项数.3.从函数角度探讨等差数列的性质与图像由an=f(n)=a1+(n-1)d=dn+(a1-d),可知其图像是直线y=dx+(a1-d)上的一些等间隔的点,这些点的横坐标是些正整数,其中公差d是该直线的斜率,即自变量每增加1,函数值增加d.当d0时,an为递增数列,如图(甲)所示.当d0时,an为递减数列,如图(乙)所示.当d=0时,an为常数列,如图(丙)所示.4.等差中项假如在数a与b之间插入一个数A,使a,A,b成等差数列,那么A叫做数a与b的等差中项.留意:(1)等差中项A=a,A
14、,b成等差数列;(2)若a,b,c成等差数列,那么b=,2b=a+c,b-a=c-b,a-b=b-c都是等价的;(3)用递推关系an+1=(an+an+2)给出的数列是等差数列,an+1是它的前一项an与后一项an+2的等差中项.知能自主梳理1.等差数列一般地,假如一个数列从第2项起,每一项与前一项的是,我们称这样的数列为等差数列.2.等差中项假如在a与b中间插入一个数A,使a,A,b成等差数列,那么A叫做.3.等差数列的推断方法(1)要证明数列an是等差数列,只要证明:当n2时,.(2)假如an+1=对随意的正整数n都成立,那么数列an是.(3)若a,A,b成等差数列,则A.4.等差数列的通
15、项公式等差数列的通项公式为,它的推广通项公式为.5.等差数列的单调性当d0时,an是数列;当d=0时,an是数列;当d0时,an是数列.答案1.差同一个常数2.a与b的等差中项3.(1)an-an-1=d(常数)(2)等差数列(3)4.an=a1+(n-1)dan=am+(n-m)d5.递增常递减思路方法技巧命题方向等差数列的定义及应用例1推断下列数列是否为等差数列.(1)an=3n+2;(2)an=n2+n.分析利用等差数列定义,看an+1-an是否为常数即可.解析(1)an+1-an=3(n+1)+2-(3n+2)=3(nN+).由n的随意性知,这个数列为等差数列.(2)an+1-an=(
16、n+1)2+(n+1)-(n2+n)=2n+2,不是常数,所以这个数列不是等差数列.说明利用定义法推断等差数列的关键是看an+1-an得到的结论是否是一个与n无关的常数,若是,即为等差数列,若不是,则不是等差数列.至于它究竟是一个什么样的数列,这些不再是我们探讨的范畴.1n=1变式应用1试推断数列cn,cn=是否为等差数列.?2n-5n2解析c2-c1=-1-1=-2,cn+1-cn=2(n+1)-5-2n+5=2(n2).cn+1-cn(n1)不等于同一个常数,不符合等差数列定义.cn不是等差数列.命题方向等差数列通项公式的应用例2已知数列an为等差数列,且a5=11,a8=5,求a11.分
17、析利用通项公式先求出a1和d,再求a11,也可以利用通项公式的变形形式an=am+(n-m)d求解.解析解法一:设数列an的首项为a1,公差为d,由等差数列的通项公式及已知,得a1+4d=11a1=19解得.a1+7d=5d=-2a11=19+(11-1)(-2)=-1.解法二:a8=a5+(8-5)d,d=-2.a11=a8+(11-8)d=5+3(-2)=-1.说明(1)对于解法一,依据方程的思想,应用等差数列的通项公式先求出a1和d,确定通项,此法也称为基本量法.(2)对于解法二,依据通项公式的变形公式为:am=an+(m-n)d,m,nN+,进一步变形为d=,应留意驾驭对它的敏捷应用.
18、变式应用2已知等差数列an中,a10=29,a21=62,试推断91是否为此数列中的项.a10=a1+9d=29解析设等差数列的公差为d,则有,a21=a1+20d=62解得a1=2,d=3.an=2+(n-1)33n-1.令an3n-1=91,得n=N+.91不是此数列中的项.命题方向等差中项的应用例3已知a,b,c成等差数列,那么a2(b+c),b2(c+a),c2(a+b)是否成等差数列?分析已知a,b,c成等差数列,由等差中项的定义,可知a+c=2b,然后要证其他三项a2(b+c),b2(c+a),c2(a+b)是否成等差数列,同样考虑等差中项.当然需用到已知条件a+c=2b.解析因为
19、a,b,c成等差数列,所以a+c=2b,又a2(b+c)+c2(a+b)-2b2(c+a)=a2c+c2a+ab(a-2b)+bc(c-2b)=a2c+c2a-2abc=ac(a+c-2b)=0,所以a2(b+c)+c2(a+b)=2b2(c+a),所以a2(a+c),b2(c+a),c2(a+b)成等差数列.说明本题主要考查等差中项的应用,假如a,b,c成等差数列,则有a+c=2b;反之,若a+c=2b,则a,b,c成等差数列.变式应用3已知数列xn的首项x1=3,通项xn=2np+nq(nN,p,q为常数),且x1、x4、x5成等差数列.求:p,q的值.分析由x1、x4、x5成等差数列得出
20、一个关于p,q的等式,结合x1=3推出2p+q=3,从而得到p,q.解析由x1=3,得2p+q=3,又x4=24p+4q,x5=25p+5q,且x1+x5=2x4,得325p+5q=25p+8q,由得q=1,p=1.说明若三数a,b,c成等差数列,则a+c=2b,即b为a,c的等差中项,这个结论在已知等差数列的题中常常用到.探究延拓创新命题方向等差数列的实际应用例4某公司经销一种数码产品,第1年获利200万元,从第2年起由于市场竞争等方面的缘由,利润每年比上一年削减20万元,根据这一规律假如公司不开发新产品,也不调整经营策略,从哪一年起,该公司经销这一产品将亏损?解析由题意可知,设第1年获利为
21、a1,第n年获利为an,则an-an-1=-20,(n2,nN),每年获利构成等差数列an,且首项a1=200,公差d=-20,所以an=a1+(n-1)d=200+(n-1)(-20)=-20n+220.若an0,则该公司经销这一产品将亏损,由an-20n2200,解得n11,即从第12年起,该公司经销这一产品将亏损.说明关于数列的应用题,首先要建立数列模型将实际问题数列化.变式应用42022年将在伦敦举办奥运会,伦敦将会有许多的体育场,为了实际效果,体育场的看台一般呈“辐射状”.例如,某体育场一角的看台座位是这样排列的:第一排有150个座位,从其次排起每一排都比前一排多20个座位,你能用a
22、n表示第n排的座位数吗?第10排可坐多少人?分析分析题意知,看台上的每一排的座位数组成了一个等差数列.解析由题意知,每排的座位数组成了一个首项为a1=150,公差为d=20的等差数列,an=a1+(n-1)d=150+(n-1)20=20n+130,则a10=330,即第10排可坐330人.名师辨误做答例5已知数列an,a1=a2=1,an=an-1+2(n3).(1)推断数列an是否为等差数列?说明理由;(2)求an的通项公式.误会(1)an=an-1+2,an-an-1=2(为常数),an是等差数列.(2)由上述可知,an=1+2(n-1)=2n-1.辨析忽视首项与全部项之间的整体关系,而
23、推断特别数列的类型是初学者易犯的错误.事实上,数列an从第2项起,以后各项组成等差数列,而an不是等差数列,an=f(n)应当表示为“分段函数”型.正解(1)当n3时,an=an-1+2,即an-an-1=2.当n=2时,a2-a1=0不满意上式.an不是等差数列.(2)a2=1,an=an-1+2(n3),a3=a2+2=3.a3-a2=2.当n3时,an-an-1=2.an=a2+(n-2)d=1+2(n-2)=2n-3,又a1=1不满意此式.1(n=1)an=.2n-3(n2)课堂巩固训练一、选择题1.(2022重庆文,1)在等差数列an中,a2=2,a3=4,则a10=()A.12B.
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 等差数列 数学 上册 教学 设计
限制150内