中考数学中的几何最值问题(共19页).doc
《中考数学中的几何最值问题(共19页).doc》由会员分享,可在线阅读,更多相关《中考数学中的几何最值问题(共19页).doc(20页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、精选优质文档-倾情为你奉上中考数学中的几何最值问题在近几年各地中考中,几何最值问题屡屡受到命题者关注,此类问题不仅涉及平面几何的基础知识,还涉及几何图形的性质、平面直角坐标系、方程与不等式、函数知识等。因此一批立意新颖、构造精巧、考点突出的新题、活题脱颖而出。这类试题较好地考查了同学们的几何探究、推理能力的要求及数学思想方法的运用。本节课以近几年的全国各地的中考题为例加以讲解,希对同学们的备考有所帮助。OyxACB1(2009年潍坊市)已知边长为的正三角形,两顶点分别在平面直角坐标系的轴、轴的正半轴上滑动,点C在第一象限,连结OC,则OC的长的最大值是_ 解:取AB的中点D,连结OD、CD、O
2、C,则OD=,且CDAB,CD=,当C,D,O三点共线时,OC=OD+CD,否则OCOD+CD,OC长的最大值是+。点评 本题求一条线段的最大值,关键是抓住斜边长度确定,斜边上的中线长也确定,利用三角形两边之和大于第三边,寻找突破口从而求解。2(2008年兰州)如图,在中,经过点且与边相切的动圆与分别相交于点,则线段长度的最小值是( )A B C5 D4.8解:易知ABC是直角三角形,所以EF是圆的直径,设切点是D,因为直径是圆中最长的弦,所以EFCD,作CHAB于点H,则CDCH,所以有EFCH,即长度的最小值是CH,利用面积方法易得CH=4.8。所以线段长度的最小值是4.8,故选D。点评
3、本题求一条线段的最小值,通过转化后利用垂线段最短求解。3(2009年四川达州)在边长为2的正方形ABCD中,点Q为BC边的中点,点P为对角线AC上一动点,连接PB、PQ,则PBQ周长的最小值为_(结果不取近似值)。解:B、Q在直线AC同侧,动点P只能在AC上运动。PBQ中,B、Q为定点,故BQ长度不变,要使PBQ周长最小,应使动点P到两定点B、Q之和PB+PQ最小。直线AC是正方形的对称轴,点Q关于对角线AC的对称点Q一定落在边CD上,如图所示,当B、P、 Q共线时PB+PQ=PB+PQ=BQ=取最小值,则PBQ周长的最小值为+1。点评 本题有一定的难度,PBQ周长的最小值问题转为求一个动点到
4、两个定点的距离和的最小值问题,通过作对称点的方法,当三点共线时,两条线段和PBQ周长的最小。4(2010年苏州)如图,已知A、B两点的坐标分别为(2,0)、(0,2),C的圆心坐标为(1,0),半径为1若D是C上的一个动点,线段DA与y轴交于点E,则ABE面积的最小值是( ) A2 B1 C D解:当AD为C的切线,切点为D时,OE最长,BE最短,此时ABE面积最小,易证AOEADC,所以,可求得OE=,于是BE=2-,从而ABE面积的最小值是。选D。点评 本题求面积的最小值,由于三角形的高确定,因此只要求底(即一条线段)的最小值即可,根据圆的性质,易知AD处于极端位置(切线)时,所求三角形的
5、面积最小。5(2010年天津市)在平面直角坐标系中,矩形的顶点O在坐标原点,顶点A、B分别在轴、轴的正半轴上,D为边OB的中点.(1)若为边上的一个动点,当的周长最小时,求点的坐标;(2)若、为边上的两个动点,且,当四边形的周长最小时,求点、的坐标.温馨提示 如图可以作点D关于x轴的对称点D,连接C D与x轴交于点E,的周长是最小的。这样,你只需要求出OE的长,就可以确定点E的坐标了。yBODCAxEyBODCAx解:(1)如图,作点D关于轴的对称点,连接与轴交于点E,连接.若在边上任取点(与点E不重合),连接、.由,可知的周长最小. 在矩形中,为的中点,yBODCAxE ,. OEBC, R
6、tRt,有. . 点的坐标为(1,0). (2)如图,作点关于轴的对称点,在边上截取,连接与轴交于点,在上截取. GCEF, 四边形为平行四边形,有.又 、的长为定值,yBODCAxEGF 此时得到的点、使四边形的周长最小. OEBC, RtRt, 有 . . . 点的坐标为(,0),点的坐标为(,0)点评 本题(1)有一个温馨提示,而问题(2)要使四边形CDEF的周长最小,注意到DC、EF的长为定值,故只需DE+CF最小,用轴对称及平移方法设法将DE、CF集中到一条直线上解决问题。6(2009年郴州市)如图1,已知正比例函数和反比例函数的图像都经过点M(2,1),且P(1,2)为双曲线上的一
7、点,Q为坐标平面上一动点,PA垂直于x轴,QB垂直于y轴,垂足分别是A、B (1)写出正比例函数和反比例函数的关系式;(2)当点Q在直线MO上运动时,直线MO上是否存在这样的点Q,使得OBQ与OAP面积相等?如果存在,请求出点Q的坐标,如果不存在,请说明理由; (3)如图2,当点Q在第一象限中的双曲线上运动时,作以OP、OQ为邻边的平行四边形OPCQ,求平行四边形OPCQ周长的最小值图2图1解:(1)设正比例函数解析式为,将点M(,)坐标代入得,所以正比例函数解析式为 2分同样可得,反比例函数解析式为 3分(2)当点Q在直线DO上运动时,设点Q的坐标为, 4分于是,而,所以有,解得 6分所以点
8、Q的坐标为和 7分(3)因为四边形OPCQ是平行四边形,所以OPCQ,OQPC,而点P(,)是定点,所以OP的长也是定长,所以要求平行四边形OPCQ周长的最小值就只需求OQ的最小值8分因为点Q在第一象限中双曲线上,所以可设点Q的坐标为,由勾股定理可得,所以当即时,有最小值4,又因为OQ为正值,所以OQ与同时取得最小值,所以OQ有最小值2 9分 由勾股定理得OP,所以平行四边形OPCQ周长的最小值是10分点评 本题中的(1)、(2)小题相对较简单,问题(3)求平行四边形周长的最小值,注意到OP的长为定长,只需求邻边OQ的最小值,通过勾股定理、配方求解。其实本题还有另外两种解法:,即OQ的最小值为
9、4。反比例函数的一条对称轴为一、三象限的角平分线,即直线y=x,所以取到最小值的点Q只能是反比例函数与直线y=x在第一象限的交点,同样可求得OQ的最小值为4。7(2010年宁德市)如图,四边形ABCD是正方形,ABE是等边三角形,M为对角线BD(不含B点)上任意一点,将BM绕点B逆时针旋转60得到BN,连接EN、AM、CM. 求证:AMBENB; 当M点在何处时,AMCM的值最小;当M点在何处时,AMBMCM的值最小,并说明理由; 当AMBMCM的最小值为时,求正方形的边长.EA DB CNM解:ABE是等边三角形,BABE,ABE60.MBN60,MBNABNABEABN.即ABMEBN.又
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 中考 数学 中的 几何 问题 19
限制150内