测量与信号基础英文PPT (13).pdf
《测量与信号基础英文PPT (13).pdf》由会员分享,可在线阅读,更多相关《测量与信号基础英文PPT (13).pdf(22页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、Chapter 3 Frequency Spectrum Analysis Fundamentals of Measurement and Signal Analysis 3.2 Fourier series representation of periodic signals A signal is said to be periodic if it satisfies the condition:x(t)=x(t+T)Where T is called the fundamental period,and f0=1/T is called the fundamental frequency
2、.In mathematics,any periodic signal can be represent as the sum of harmonically related sinusoid signals,which are called the Fourier series represntation.f0f20f30f40TT1)Orthogonal vectors a10 b1 For a X-Y table,it can move to any point with two motors.0 X Y y1x13.2 Fourier series representation of
3、periodic signals Two vectors are orthogonal if and only if their inner product is zero.In a orthogonal vector space any vector can be represented by orthogonal vectors.Fxy11XYa A11Fb BX Y Z z111Fx xy yzX Y0A B02121()()0,()(),f t ft dtijf t ft dtKijijttijttijij nnx tc f tc ftc ftttt()()().(),112212Wh
4、ere Ci is the projection coefficient in fi(t).2)Orthogonal function Definition of the orthogonal functions set:3.2 Fourier series representation of periodic signals In similar way,Two functions are orthogonal if their inner product is zero.In a orthogonal function space,any signal can be represented
5、 by orthogonal functions:3)Orthogonality of Sines and Cosines 3.2 Fourier series representation of periodic signals Sines and Cosines in harmonics are Orthogonal,they consist of an orthogonal basis.af t0()sin(2)bf t0()cos(2)cf t0()sin(2 2)df t0()cos(2 2)ef t0()sin(2 3)ff t0()cos(2 3)nf tmf t dt 000T
6、sin(2)sin(2)0,nf tmf t dt 000Tcos(2)cos(2)0,nf tmf t dt 000Tsin(2)cos(2)0,nm3.2 Fourier series representation of periodic signals Example:f tf t dt 000Tsin(2)*sin(2 2)0f tf t dt 00-cos(2)*cos(2 2)0f tf t dt 000Tsin(2)*cos(2 2)0f tf t dt 000Tsin(2 3)*cos(2 5)0 x=linspace(0,2*pi,1024);y1=sin(x);y2=sin
7、(2*x);y3=cos(x);y4=cos(2*x);y5=sin(3*x);y6=cos(5*x);z1=y1.*y2;subplot(4,1,1);plot(x,z1,linewidth,2);z2=y3.*y4;subplot(4,1,2);plot(x,z2,linewidth,2);z3=y1.*y4;subplot(4,1,3);plot(x,z3,linewidth,2);z4=y5.*y6;subplot(4,1,4);plot(x,z4,linewidth,2);aTx t dtTT2()0/2/2nTTaTx tnf t dt n0/2/22()cos(2),1,2,3,
8、.nTTbTx tnf t dt n0/2/22()sin(2),1,2,3,.F0 X Y y1x1(a)annnx tant bnf t02010()(cos 2 fsin 2);n(1,2,3,.)4)Fourier series representation 3.2 Fourier series representation of periodic signals f0=1/T x(t)=x(t+T)Fourier coefficients:annnx tant bnf t02010()(cos 2 fsin 2)n(1,2,3,.)In the form of amplitude/p
9、hase:x tAntannn0()cos(2 f)201abnnnA22;arctgbannnAuxiliary angle formula of trigonometric function 22Ascossin()=arctgAinBABB3.2 Fourier series representation of periodic signals Amplitude C1 C2 C3 Ci is the Fourier coefficient 5)Spectrum of periodic signals:3.2 Fourier series representation of period
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 测量与信号基础英文PPT 13 测量 信号 基础 英文 PPT 13
限制150内