信息论基础与编码 (10).pdf
《信息论基础与编码 (10).pdf》由会员分享,可在线阅读,更多相关《信息论基础与编码 (10).pdf(22页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、SDP Relaxation for Nonconvex QPWhy?SupposeWi=Pwiwiis optimal.Goal:find a rank-1Wi,such thatTr(Wihjhj)=Tr(Wihjhj)andTr(Wi)=Tr(Wi).?Recall a()=(1,ej,.,ej(K1).WriteTr(Wihjhj)=P|a(j)wi|2?The real-valued complex trig polynomialfi():=X|a()wi|2 0,.fi()=|a()wi|2for some wi.(Riesz-Fejer;spectral factorizatio
2、n)?Integrating outin|a()wi|2=P|a()wi|2yieldsTr(wi(wi)=k wik2=Xkwik2=XTr(wi(wi).?Moreover,Tr(Wihjhj)=P|a(j)wi|2=f(j)=Tr(wi(wi)hjhj)Thus,Wi=wi(wi)ni=1is feasible and has the same objective value asWini=1.The SDP relaxation has a rank-1 solution.24SDP Relaxation for Nonconvex QPWorst-case SDP Approxima
3、tion PerformanceIn general,SDP relaxation for separable homogeneous QCQP is not tight.Example:For anyM 0,considerqp:=minx2+y2s.t.y2 1,x2 Mxy 1,x2+Mxy 1.Notice that the last two constraints of QCQP implyx2 M|x|y|+1,x2 1,which,inlight of the constraintsy2 1,further implyx2 M+1.qp M+2.However,for the S
4、DP relaxationsdp:=minX(11)+X(22)s.t.X(22)1,X(11)MX(12)1,X(22)+MX(12)1,X?0.X=I is clearly a feasible solution,implyingsdp 2.the performance ratioqp/sdpis at least(M+2)/2,which can be arbitrarily large.25SDP Relaxation for Nonconvex QPSpecial Case:Single Group MulticastingWhenn=1(single group),the tra
5、nsmit beamforming problem becomesqp:=minwHnkwk2s.t.wHiw:=XIi|hw|2 1,i=1,.,m,h6=0 Hn(H=CorR),I1 Im=1,.,M z=x+iy(x,y Rn),z=xT iyT|Ii|:number of antennas at receiveri.w=the least norm vector in the exteriorsof ellipsoids.Formulation is“dual”to the max norm over ellipsoids problem considered by NRT99.26
6、SDP Relaxation for Nonconvex QPSDP RelaxationLetZ=zzH(Z?0,rankZ 1)LetHi=PIihh.The SDP relaxation isqp=minTr(Z)s.t.Tr(HiZ)=XIiTr(hhHZ)1,i=1,.,m,Z?0,rankZ 1.sdp:=minTr(W)s.t.Tr(HiW)1,i=1,.,m,W?0.Then0 sdp qp?Csdp(C 1)27SDP Relaxation for Nonconvex QPApproximation Upper&Lower BoundsTheorem 1:qp Csdpwhe
7、re122m2C27m2ifH=R12(3.6)2m C 8mifH=C28SDP Relaxation for Nonconvex QPNumerical experienceSimulation with randomly generatedh(m=8,n=4)shows that both the mean and themaximum of the upper boundqpsdpare lower in theH=Ccase than theH=Rcase.29SDP Relaxation for Nonconvex QPLower Bound:H=RExample:Taken=2,
8、|Ii|=1,hi=?cos(2mi)sin(2mi)?,i=1,.,mandconsidermin kwk2,s.t.|hiw|2 1,i=1,2,.,m.hiuniformly partitions the unit circle.For any QP feas.solnw,isuch thatw hiapproximately,i.e.,their angular spreadiis about2mThis implies1|hiw|cosikwkkhik mkwk kwk2m22 qpm22 W=I is a feas.soln of SDP,sosdp Tr(I)=2Thusqp12
9、2m2sdp30SDP Relaxation for Nonconvex QPUpper Bound:H=RLetWbe an optimal SDP soln,with rankr 2m(suchWexists).Goal:randomly generate a feasible solution wfor QCQP.WriteW=rXk=1wkwk(wk H).Let:=rXk=1wkk,ki.i.d.N(0,1).Then E(Hi)=Tr(HiW)1 i satisfies SDP constraints in expectation.E(kk2)=Tr(W)kkequalssdp=T
10、r(W)in expectation.Question:such thatHi for alliandkk Tr(W)?Facts:P(Hi 0,i?P(|k|2 Tr(W)1 0(Markov ineq.)31SDP Relaxation for Nonconvex QPUnion bound:P?Hi ,i=1,.,m&kk2 Tr(W)?1 mXi=1P?Hi Tr(W)?1 m 10if =3,=9m2so RnsuchHi 9m2,i=1,.,mkk2 3Tr(W)=3sdp.Then w:=miniHiis a feas.soln of QCQP,k wk2=kk2miniHi3s
11、dp/(9m2).Thusqp k wk227m2sdp.32SDP Relaxation for Nonconvex QPComplex Case:H=CProof of upper bound is similar to the real case,but withki.i.d.Nc(0,1)(densitye|k|2)ThenP(Hi 0,isoP?Hi ,i=1,.,m&kk2 Tr(Z)?1 mXi=1P?Hi Tr(W)?1 m43 10if =2,=14m33SDP Relaxation for Nonconvex QPLower Bounds:H=CExample:LetK=d
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 信息论基础与编码 10 信息论 基础 编码 10
限制150内