六西格玛数据分析技术.ppt
《六西格玛数据分析技术.ppt》由会员分享,可在线阅读,更多相关《六西格玛数据分析技术.ppt(344页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、http:/ 录课程概要第1章 基本统计概念第2章 概率及其应用第3章 管理中常见的几个概率分布第4章 参数估计第5章 假设检验第6章 离散数据的卡方检验第7章 方差分析第8章 相关分析与一元回归第9章 多元回归分析退出放映http:/ 2.概率及其在质量管理中的应用3.质量管理中常见的几个概率分布4.参数估计及其应用5.假设检验及其应用6.离散数据的卡方检验7.方差分析及其应用8.相关分析与一元回归9.多元回归及其应用返回目录http:/ 开展六西格玛管理项目的黑带及黑带大师候选人和掌握统计技术与方法应用的人。返回目录http:/ 通过本课程的学习你将达到:1.理解统计数据分析主要方法的基本
2、理论2.树立起六西格玛管理的统计思想3.掌握了基本统计方法在管理中的应用4.能熟练运用Minitab软件实现数据分析5.建立起运用统计方法解决管理问题的能力返回目录http:/ 基本统计概念 4课时第2章 概率及其应用 4课时第3章 管理中常见的几个概率分布 4课时第4章 参数估计 4课时第5章 假设检验 4课时第6章 离散数据的卡方检验 4课时第7章 方差分析 4课时第8章 相关分析与一元回归 4课时第9章 多元回归分析 4课时返回目录http:/ 基本统计概念1.1 常用数据分析技术概述 1.2 总体与样本1.3 数据的收集1.4 数据的类型1.5 数据集中趋势的测度1.6 数据离散程度的
3、测度1.7 数据基本分析的软件实现小组讨论与练习 返回目录http:/ 章 目 标1.理解数据分析在6管理中的重要意义2.理解几个常见的统计概念3.树立企业管理人员量化管理的统计意识4.掌握几种不同平均数的计算方法5.掌握标准差和变异系数的计算方法返回目录http:/ 常用数据分析技术概述界定界定Define量测量测Measure分析分析Analyze改进改进Improve控制控制Control量测所得量测所得 各种数据各种数据Data返回目录http:/ 管理目标管理目标顾客满意顾客满意返回目录http:/ 总体与样本总体这个企业员工的月平均收入是多少?信息由样本信息作为总体信息估计值从总体
4、中抽取一小部分样本返回目录http:/ size):样本中包含的个体的数量称为样本容量,通常用n表示。返回目录http:/ 数据的收集6管理是一种科学的量化管理没有数据就没有管理没有数据的统计分析就等于无米之炊数据资料的来源有两种:原始资料和二手资料抽样是企业管理中收集数据的最普遍方法宏观数据资料的获取主要依赖于各种统计年鉴和咨询顾问公司返回目录http:/ 概率抽样和非概率抽样 概率抽样(随机性原则)非概率抽样 配额抽样 简单随机抽样(simple random sampling)分层抽样(stratified sampling)整群抽样(cluster sampling)等距抽样。又称系统
5、抽样(systematic sampling)返回目录http:/ 数据的类型 6管理中通常遇到两种类型的数据:定性数据定性数据定量数据定量数据定类数据定类数据定序数据定序数据计量数据计量数据计数数据计数数据 数据是决策的依据返回目录http:/ 怎样获得计量数据连续型数据连续型数据连续型数据连续型数据返回目录http:/ 人数。需要较大的样本量,以更好地描述产品或服务的某种特性。满意的和不满意的人数就是数出来的满意的和不满意的人数就是数出来的瓷砖中的斑点数瓷砖中的斑点数返回目录http:/ 变量是说明和描述事物某种特征的指标 变量的种类 参数 统计量变量的种类变量的种类分类变量分类变量顺序变
6、量顺序变量数值型变量数值型变量随机变量随机变量连续型随机变量连续型随机变量离散型随机变量离散型随机变量返回目录http:/ 数据集中趋势的测度 反映样本位置的统计量 样本均值 设有样本数据 就是样本均值样本中位数:将样本数据按从小到大排序后,处于中间位置上的数就是中位数。返回目录http:/ 加权算术平均数其中 为 的权重(weight),表示 在数据集中所占的比重,而当权重相同,即时加权算术平均数即为简单算术平均数。返回目录http:/ 连乘,然后开n次方,即其中:代表几何平均数,为连乘符号当n2时,为了方便计算可采用对上式两边取对数的方法计算:几何平均数一般用于计算在一段时间内有复式增长的
7、数据的均值 几何平均数(geometric mean)注注意意返回目录http:/ 。返回目录http:/ 数据离散程度的测度 一批统计数据相对它的均值而言,这些数据的离散程度如何?数据波动的统计量通常有三种:样本方差与样本方差与样本标准差样本标准差数据波动的统计量极差极差变异系数变异系数返回目录http:/ 息较多。现在的社会居民收入分配相差很大,这对社会稳定很不利。极差让我们可以更清醒地认识到贫富差距。所以极差还是很有意义的一个统计量。一组数据中的最大值与最小值之差称为极差,用R表示。极差的计算十分简单,如某企业中员工的最大月收入是 12000元,最低月收入是800元,则 R1200080
8、011200(元)返回目录http:/ 设有两组样本数据分别为:2、4、6、8、10 4、5、6、7、8 把这两组数据分别标在下面的直线轴上0024681045678返回目录http:/ 由这两组数据的均值和标准差,结合上面的图形,我们可以直观地看到这两组数据均以6为中心,但前面5个数的离散程度要大于后面5个数的离散程度。第一组数的标准差是3.16,第二组数的标准差1.58。这个例子让我们更直观地体会到标准差以及均值的意义。返回目录http:/ 数及标准差如下(单位:元)试问甲、乙两个企业哪个企业职工的月平均奖金相差较大?你怎么判断这个问题,你的答案是什么?乙:甲:返回目录http:/ 数据基
9、本分析的软件实现StatBasic StatisticsDisplay Descriptive Statistics Store Descriptive Statistics 返回目录http:/ Descriptive Statistics 在绘图窗口的输出分布图箱形图置信区间返回目录http:/ Descriptive Statistics 程序输出窗口Store Descriptive Statistics 在工作表中的结果输出关于身高数据的统计量分析返回目录http:/ 1.试举本企业中关于总体、样本、个体和样品的例子。2.试举实际问题中哪些数是连续型数据,哪些数是离散型数据。3.某企
10、业2000年到2003年的销售收入增长率分别是15、20、23、28,请问这四年的销售收入平均增长是多少?4.从某啤酒厂的一批瓶装啤酒中随机抽取了10瓶,测得装量分别为:(单位:ml)640、639、636、641、642、638、639、643、636、639 试计算样本均值与样本标准差。5.从某厂生产的两种不同规格的车轴中,各随机抽取了20根,测 得它们的直径的均值与标准差分别为 甲产品 乙产品 试问哪种产品的质量波动大?返回目录http:/ 概率及其应用2.1 掷骰子的游戏2.2 概率及概率的计算2.3 概率的性质与运算法则2.4 条件概率2.5 独立性2.6 全概率公式2.7 贝叶斯公
11、式2.8 概率树小组讨论与练习返回目录http:/ 章 目 标1.理解随机事件及其概率的基本思想2.掌握概率的性质与运算法则3.理解条件概率与事件的独立4.理解优质产品不是检验出来的理念5.掌握全概率公式和贝叶斯公式的应用6.会运用概率树解决有关问题返回目录http:/ 掷骰子的游戏u一枚骰子掷下去后点数为1、2、3、4、5、6各出现的可能性有多大?u我们大家都知道一枚骰子掷下去后,各个点数出现的机会均等,每个点数出现的可能性都是1/6。可能出现的点数可能性大小1/61/61/61/61/61/6返回目录http:/ 骰子骰子1一共有36个组合,每个组合出现的概率是1/36=0.02780.0
12、2780.02780.02780.02780.02780.02780.02780.02780.02780.02780.02780.02780.02780.02780.02780.02780.02780.02780.02780.02780.02780.02780.02780.02780.02780.02780.02780.02780.02780.02780.02780.02780.02780.02780.02780.0278u骰子骰子1 1与骰子与骰子2 2分别出现任何给定值的概率都等于分别出现任何给定值的概率都等于1/6u任一给定组合发生的概率任一给定组合发生的概率返回目录http:/ 概率及
13、概率的计算u古典概型 随机事件常用大写的英文字母A、B、C等表示。随机事件A的概率,用P(A)表示u统计概型其中:n表示相同情况下试验的次数,m表示某事件A出现的次数,比值m/n称为事件A发生的频率。返回目录http:/ 概率的性质与运算法则u概率的公理化定义 在研究随机现象中,把表示随机事件A发生的可能性大小的实数称为该事件的概率,用P(A)表示。前苏联的柯莫哥洛夫于1933年给出如下的概率公理化定义:1.非负性:对任一随机事件A,有 2.规范性:必然事件的概率为1,而不可能事件的概率为0,即 3.可加性:如果A与B是两个互不相容事件(互斥),则返回目录http:/ BA返回目录http:/
14、 条 件 概 率 u在现实世界中,任何随机试验都是在一定条件下进行的。这里我们要讨论的条件概率,则是当试验结果的部分信息已知(即在原随机试验的条件下,再加上一些附加信息)。例如当某一事件B已经发生时,求事件A发生的概率,称这种概率为事件B发生条件下事件A发生的条件概率,记为 P(A|B)u由于增加了新的条件(附加信息),一般来说,P(A|B)P(A)。返回目录http:/ 法 公 式u由前一页最后的结果,我们看到条件概率有如下的计算公式:即条件概率可由两个无条件概率之商来计算。u对上边的公式变形,即得此公式就是所谓的概率乘法公式。u如果将A、B的位置对换,这时有 P(BA)=P(B|A)P(A
15、),而P(AB)=P(BA),于是公式(2)与(3)统称为概率的乘法公式。返回目录http:/ 个 例 子u例24:设有1000件产品,其中850件是正品,150件是次品,从中依次抽取2件,2件都是次品的概率是多少?解:设A i表示“第i次抽到的是次品”,i=1,2,所求概率为P(A1A2)。因为即抽到工件都是次品的概率是2.24%。运用乘法公式可得返回目录http:/ 独 立 性u在使用概率的乘法公式时,一般都要计算概率,但是在事件A与B独立的情况下,乘法公式就会变得简单。u什么是独立事件呢?一般认为,两个事件中不论哪一个事件发生与否并不影响另一个事件发生的概率,则称这两个事件相互独立。当两
16、个事件相互独立时,其条件概率等于无条件概率,即我们甚至可以用这一公式来判断A、B两个事件是否独立!因此,当两个事件相互独立时,其乘法规则可以简化为:返回目录http:/ 工序工序2返回目录http:/ 100=8686优等率(%)9090900.903 100=7373返回目录http:/ 全 概 率 公 式 u全概率公式主要用于计算较为复杂情形随机事件的概率。u全概率公式实质上是加法公式和乘法公式的综合运用和推广。u例26:某车间用甲、乙、丙、三台机床进行生产,各台机床加工零件的次品率分别是5%,4%,2%,它们各自的零件分别占总产量的25%,35%,40%。三台机床生产的零件混在一起,求任
17、取一个零件是次品的概率。管接头镗孔机床管接头镗孔机床返回目录http:/ 的求解 u令A1表示“零件来自甲台机床”,A2表示“零件来自乙台机床”,A3表示“零件来自丙台机床”,B表示“抽取到次品”。u则事件发生当且仅当下列三种情形任意出现一种:1.是甲机床生产的零件且为次品(A1B);2.是乙机床生产的零件且为次品(A2B);3.是丙机床生产的零件且为次品(A3B)。u显然,事件B是A1B,A2B,A3B这三个两两互不相容事件的和,用公式表示为:B=A1B+A2B+A3B返回目录http:/ 的求解(续)u根据加法公式:P(B)=P(A1B)+P(A2B)+P(A3B)u分别对P(AiB)(i
18、=1,2,3)用乘法公式:P(AiB)=P(Ai)P(B|Ai),i=1,2,3于是得:u代入已知数据:P(A1)=0.25,P(A2)=0.35,P(A3)=0.40 P(B|Ai)=0.05,P(B|Ai)=0.04,P(B|Ai)=0.02 P(B)=0.0345 即任取一件产品是次品的概率为0.0345。返回目录http:/ A1+A2+An,则 我们就称这个公式为全概率公式。全概率公式的总结u全概率公式的直观意义是:某一事件B的发生有多种可能的原因Ai(i=1,2,n),如果B是由原因Ai所引起的,则B发生的概率是P(AiB)(i=1,2,n)。每一事件Ai发生都可能导致B发生,相应
19、的概率是P(B|Ai),故B发生的概率是:当直接计算P(B)较困难,而P(Ai),P(B|Ai)(i=1,2,n)的计算较简单时,就可以利用全概率公式计算P(B)。例26 就是这样计算的。返回目录http:/ A1+A2+An,则 2.7 贝叶斯公式 这就是著名的贝叶斯公式,也称为逆概率公式。贝叶斯公式是英国统计学家贝叶斯(TBayes)给出,在其去世后的1763年才发表。该公式是在观察到事件B已发生的条件下,寻找导致B发生的每个原因Ai的概率。P(Ai)和P(Ai|B)分别称为原因Ai的验前概率和验后概率。u此公式在实际应用中,可帮助人们确定引起事件B发生的最可能原因。返回目录http:/
20、代入已知数据(见例7),计算得 类似有P(A2|B)=0.406,P(A3|B)=0.232。本例中的P(Ai)是事件(取到的一件是次品)发生之前事件Ai发生的概率,是由以往数据分析所得,故称验前概率。P(Ai|B)是事件(取到的一件次品(B))发生后事件Ai发生的概率,它是获得新信息(即事件B发生)之后再重新加以修正的概率,故称P(Ai|B)为验后概率。返回目录http:/ 概 率 树 u企业的领导层在讨论竞争策略时,常常是众说纷纭,但当说完后,人们又一筹莫展,没有头绪;u利用概率树可以帮助企业家理清思路,科学决策;u概率树就是一种树形图,然后在树干和树枝上标上相应的概率。u我们用几个例子来
21、说明这一决策方法的应用。u例28:掷一对硬币,出现结果是两个正面的概率是多大?返回目录http:/ u第一个硬币出现的可能结果是正面(概率0.5)和反面(概率0.5),于是形成两个分支。可以用0.5+0.5=1来检查有无其它可能性被遗漏。u对于这两种可能结果的每一种,对应第二枚硬币均加上相似的两个分支u于是由概率树及乘法法则,会看到出现两个正面的概率是0.25。正正(0.5)反反(0.5)正正(0.5)反反(0.5)正正(0.5)反反(0.5)结果结果 概率概率正正正正 0.25正反正反 0.25反正反正 0.25反反反反 0.25返回目录http:/ u例29:某种产品由甲、乙、丙三台机床生
22、产,每台机床的生产量不同,其中60%的产品来自机床甲,30%和10%的产品分别由乙和丙生产。甲、乙、丙三台机床产品的次品率分别是8%、12%和3%。从它们生产的一批产品中,随机抽取一件产品是次品的概率是多大?方柱立钻方柱立钻返回目录http:/ 由概率树中,我们看到所有次品的三个分枝,及在每一个枝上相应的概率。为计算随机抽取一件产品是次品的概率,我们利用乘法法则计算出每一台机床次品分枝出现的概率,在利用概率的加法法则计算出抽取一件产品是次品的概率为:(0.60.08)+(0.3 0.12)+(0.1 0.03)=0.087甲甲(0.6)丙丙(0.1)乙乙(0.3)正品正品(0.92)次品次品(
23、0.08)正品正品(0.88)次品次品(0.12)正品正品(0.97)次品次品(0.03)返回目录http:/ 决策者关心的是市场份额达到50%及以上的各种事件的组合,由概率树及概率的基本运算法则,状态S1和S2符合要求。则组合A1B1S1,A1B1S2,A1B2S1及A1B2S2符合要求,由此可计算出市场份额达到和超过50%的概率是 p=0.144+0.192+0.256+0.032=0.624A1表示研制成功(0.80)A2表示研制不成功(0.20)B2表示B公司没有对抗(0.40)B1表示B公司有新产品对抗(0.60)70%市场份额(0.30)50%市场份额(0.40)80%市场份额(0
24、.80)50%市场份额(0.10)40%市场份额(0.10)S1=0.800.600.30=0.144S2=0.800.600.40=0.192S3=0.800.600.30=0.144S1=0.800.400.80=0.256S2=0.800.400.10=0.032S3=0.800.400.10=0.03230%市场份额维持不变 40%市场份额(0.30)返回目录http:/ 3.1 随机变量 3.2 随机变量的分布 3.3 随机变量的均值与方差 3.4 二项分布及其应用 3.5 泊松分布及其应用 3.6 正态分布及其应用 3.7 中心极限定理 3.8 各种概率分布计算的Minitab实现
25、 小组讨论与练习第3章 管理中常见的几个概率分布返回目录http:/ 章 目 标1.理解随机变量及随机变量分布的基本概念2.理解随机变量的均值及方差在管理中运用的思想3.理解二项分布的意义,掌握二项分布的应用4.掌握泊松分布的意义和应用理念5.理解正态分布与6的关系6.理解中心极限定理的意义7.掌握各种概率分布的计算实现返回目录http:/ 随机变量u 日常生活中,生产实践中随机现象无处不在u把随机现象的结果用变量来表示,就称为随机变量u随机变量是随机现象表示的一种抽象,有了这种抽象,使得我们的研究更具普遍性。u常用大写的字母X,Y,Z等表示随机变量,随机变量的取值常用小写字母x,y,z等表示
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 六西格玛 数据 分析 技术
限制150内