与角平分线有关的辅助线(经典-加深)复习课程.ppt
《与角平分线有关的辅助线(经典-加深)复习课程.ppt》由会员分享,可在线阅读,更多相关《与角平分线有关的辅助线(经典-加深)复习课程.ppt(25页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、与角平分线有关的辅助线(经典-加深)既然全等三角形的对应边和对应角都相等。那么今后在证明线段(边)和角相等的问题中,全等就将被作为一个基本方法来使用(但请注意不是唯一的方法),学以致用生活中的对称轴对称等腰三角形 等边三角形轴对称图形用坐标表示轴对称利用轴对称变换作图:作轴对称图形 轴对称知识体系线段的垂直平分线如图,ABCDEF,(1)若BAC=70,F=80,则 B=(2)若 AB=6,DF=4,则 EF的长度可取下列各数中的哪个值?()(A)1 (B)2 (C)9 (D)11 (3)若 ABC的面积为24,则 DEF的面积为()若AG是ABC的一条中线,DH是DEF的一条中线,且AG=5
2、,则DH=30 C2470805BACDEF64GH例:已知,例:已知,AC、BD相交于相交于O,BO=DO,CO=AO,过,过O任任作一直线作一直线EF分别交分别交BC、AD于于E、F,求证:,求证:OE=OF。OFEDCBA BO=DO,BOC=DOA(对顶角相等)CO=AO BOC DOA(SAS)B=D(全等三角形的对应角相等)OB=OD,BOE=DOF BOE DOF(ASA)OE=OF(全等三角形的对应边相等)证明证明:在BOE与DOF中 B=D在BOC与DOA中须两次全等。如图,在如图,在ABC中,中,AD平分平分BAC,BD=CD,求证:求证:B=C证明:作DEAB,DF AC
3、,垂足分别为EF AD平分BAC,DEAB,DF AC DEDF,BEDCFD90 在BDE和CDF中 BDCD DEDF BDECDF B=C FE 如图,B C90,E是BC中点,DE平分ADC,求证(1)AE平分DAB,(2)ABCDAD,(3)AEDE。证明:作EF AD垂足为F DE平分ADC EF AD,C90 EFEC E是BC中点 ECEB EFEB EF AD,B90 AE平分 DAB例4.如图,ABCD,,AE平分 DAB,DE平分ADC。求证:ABCDAD,E是BC中点.证明:在DA上截取DFDC,连结EF辅助线做法一:向角的两边作垂线段(利用角平分线性质),自角平分线一
4、点,是一种常见的。归纳:当题目的条件出现于某个角的平分线时,可在这个 角的两边截取相等的线段,利用角的轴对称性构造全等三角形,也是一种常用的辅助线。例3.如图所示,在四边形ABCD中,ABAD,AC平分BAD;B ADC互补 求证:CDBC证明:作CE AD,交AD延长线于E 作CF AB,垂足为F AC平分 BAC,CE AD,CF AB CECF,CEDCFB90 B与 ADC互补 B ADC180 CDEADC180 CDE B 在CED和CFB中 CEDCFB CDE B CECF CED CFB CDBC例5.如图所示,在四边形ABCD中AB AD,AC平分BAD,B与D互补。求证:
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 平分线 有关 辅助线 经典 加深 复习 课程
限制150内