平面解析几何.ppt
《平面解析几何.ppt》由会员分享,可在线阅读,更多相关《平面解析几何.ppt(54页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、8 平面解析几何平面解析几何8.1 内容概述内容概述解析几何是17世纪数学发展的重大成果之一,其本质是用代数方法研究图形的几何性质,体现了数形结合的重要数学思想。与课程改革前相比,中学解析几何变化不大,主体内容仍然是:直线与方程、圆与方程、圆锥曲线与方程。只是前两者作为必修模块,统称为平面解析几何初步,第三者则放到选修1-1和选修2-1中。另外,还在平面解析几何初步中增加了一点空间直角坐标系的简单知识。在“圆锥曲线与方程”模块中,学生将学习圆锥曲线与方程,了解圆锥曲线与二次方程的关系,掌握圆锥曲线的基本几何性质,感受圆锥曲线在刻画现实世界和解决实际问题中的作用。结合已学过的曲线及其方程的实例,
2、了解曲线与方程的对应关系,进一步体会数形结合的思想。在“平面解析几何初步”模块中,学生将在平面直角坐标系中建立直线和圆的代数方程,运用代数方法研究它们的几何性质及其相互位置关系,并了解空间直角坐标系。体会数形结合的思想,初步形成用代数方法解决几何问题的能力。在“坐标系与参数方程”专题中,学生将了解曲线的多种表现形式,体会从实际问题中抽象出数学问题的过程,培养探究数学问题的兴趣和能力,体会数学在实际中的应用价值,提高应用意识和实践能力。还有一点值得注意的是,坐标系与参数方程在多年退出后又作为选修专题4-4重新进入了中学数学。该专题是解析几何初步、平面向量、三角函数等知识的综合应用和进一步深化。其
3、中,极坐标系和参数方程是重点内容,而对于柱坐标系、球坐标系等则只要求学生作简单了解。在平面解析几何初步的教学中,教师应帮助学生经历如下的过程:首先将几何问题代数化,用代数的语言描述几何要素及其关系,进而将几何问题转化为代数问题;处理代数问题;分析代数结果的几何含义,最终解决几何问题。这种思想应贯穿平面解析几何教学的始终,帮助学生不断地体会“数形结合”的思想方法。解析几何的教学要重视使学生经历“几何问题代数化处理代数问题分析代数结果的几何意义解决几何问题”的过程,不断体会数形结合的思想。直线和圆是最简单的几何图形。圆锥曲线在数学上是一个非常重要的几何模型,有很多非常好的几何性质。这些重要的几何性
4、质在日常生活、社会生产及其他科学中都有着重要而广泛的应用。在引入圆锥曲线时,应通过丰富的实例(如行星运行轨道、抛物运动轨迹、探照灯的镜面),使学生了解圆锥曲线的背景与应用。教师可以向学生展现圆锥曲线在实际中的应用,例如,投掷铅球的运行轨迹、卫星的运行轨迹。8.2 问题研究问题研究1、如何理解解析几何的基本思想?解析几何的基本思想当然是数形结合。但是,数形结合思想是以两个重要的思想观念为基础的:一是坐标观念,一是运动变化的思想。坐标观念通过位置量化,解决了点的代数化问题,而运动变化思想则通过引入点动成线观念,实现了曲线的代数化。笛卡尔的重要贡献在于他把运动与变化的思想引入数学,从动态的角度解决几
5、何问题,把曲线看作是运动的轨迹。具体而言,运用坐标表示,使得几何的“点”和代数的“数”之间构成对应关系,进而根据点动成线,把曲线上的“几何点集”,和满足方程的“坐标数集”对应起来,并且能够相互转换。通过坐标把曲线的性质译成了代数的语言,使许多曲线有了一般的表示法和统一的研究手段。总之,解析几何的基本手段是用坐标表示数,用方程表示曲线,用代数方法来研究几何图形。这种数和形之间的转换能力,是“数学双基”的一部分,是数学思想的华彩乐章。中学数学教学比较重视建立坐标观念,而较忽视解析几何中运动变化思想。无论是理解解析几何思想本质(没有点动成线,何谈曲线方程)还是理解数学学科发展,这都是不利的。如所知,
6、数学进步的一次重要飞跃是从常量数学到变量数学。而变量数学的创立有两个主要标志:解析几何和微积分。解析几何之所以列入,很重要的在于它奠定了从动态角度解决一系列复杂代数和几何问题的理论基础。以运动为基础,方程与曲线统一起来,代数学与几何学统一起来,运动也由此顺理成章地进入了代数学,产生了函数。从某种程度上讲,解析几何对变量数学的意义较之微积分更为基本,它奠定了微积分研究的基础。解析几何的历史贡献就在于它将坐标观念与运动变化思想结合到一起。在解析几何创立之前,方程是静态的,人们只关注如何求出方程的根。几何研究虽然把曲线看作动点运动的轨迹,但是曲线不能计算。只当解析几何把动点形成的曲线看作是“坐标(数
7、)”变化的结果,变数才破土而出。牛顿在这基础上,将曲线看作是动点的路径,把物体运动的轨迹表示为参数方程x=x(t),y=y(t).然后研究流数x(t)和y(t);莱布尼茨则从曲线的切线入手研究曲线性质,在坐标系上观察曲线在一点的切线斜率的变化。由此,诞生了微积分.而追溯函数的来源,它正是对各种特殊的曲线的概括,从而最终成为描述运动的工具.“数学中的转折点是笛卡儿的变数。有了变数,运动进入了数学.有了变数,辩证法进入了数学.有了变数,微分和积分立刻成为必要的了.”(恩格斯自然辩证法)2、曲线的方程为什么要满足纯粹性与完备性?曲线的方程和方程的曲线是解析几何的基本概念和理论基石,它反映了曲线和方程
8、之间的统一。曲线可以看作适合某种条件的点的集合或轨迹,曲线的方程则是平面上具有某种几何性质的点的坐标之间关系的反映,这样几何中的形和代数中的数就统一起来,研究曲线的几何问题可以转化为研究方程的代数问题;反过来,代数问题也可以转化为几何问题来研究。中学课本通常这样定义曲线的方程:在直角坐标系中,如果某曲线C(看作点的集合或适合某种条件的点的轨迹)上的点与一个二元方程f(x,y)=0的实数解建立了如下的关系:(1)曲线上点的坐标都是这个方程的解;(2)以这个方程的解为坐标的点都是曲线上的点。那么,这个方程叫做曲线的方程;这条曲线叫做方程的曲线。通常称条件(1)为方程的完备性(或曲线的纯粹性),称条
9、件(2)为方程的纯粹性(或曲线的完备性)。但曲线方程为什么要满足纯粹性与完备性?对这个问题的解释一般是这样的:如果缺少方程的完备性这个条件,就会使曲线上有些点的坐标不满足方程,存在漏网之鱼;如果缺少方程的纯粹性这个条件,就会使坐标满足方程的有些点不在曲线上,造成鱼目混珠现在问题是:漏网之鱼或鱼目混珠有何不好?或者说,不满足纯粹性与完备性就不行吗?其实,如果联系解析几何的思想,这两个要求是非常自然的。解析几何的基本想法是用代数法研究几何问题。能这样做的一个基本前提就是要给出几何对象的代数表示。解析几何给出的方案是用坐标表示点,用坐标集或方程表示曲线。代数表示的一个基本要求是应不多不少地表示相应几
10、何对象。多了少了都不是这个几何对象,而只能是其他几何对象。问题:解析法如何求两线交点?由此思考要求曲线方程具有纯粹性与完备性的必要性。3、何谓标准方程?解析几何是用代数的方法研究几何。具体地说,是通过方程研究曲线。同样的曲线,对应的方程可以不止一个。为了便于研究,我们当然应该优先选择形式简单一些或者几何特征明显一些的方程,这样的方程常称作标准方程。以二次曲线为例。二次曲线的方程之所以复杂,是由于坐标系的任意选取所产生的。如果选取适当的坐标系,那么曲线方程就可以大为简化,这也就是通常所说的标准方程。我们就是通过标准方程来研究相应曲线的性质的。4、如何理解圆锥曲线的统一性圆锥曲线是解析几何的核心内
11、容,是解析几何基本思想和基本方法的具体运用。高中学习三种圆锥曲线是单独展开的,对它们统一性的揭示不够充分。理解圆锥曲线的统一性至少有三个角度:统一的来源、统一的定义、统一的方程。统一的来源(圆锥截线的观点)设圆锥面母线、截平面与轴线的夹角分别为,截面不过圆锥顶点(非退化圆锥曲线)=/2时,曲线是圆;/2时,曲线是椭圆;=时,曲线是抛物线;0时,曲线是双曲线上述曲线离心率均为cos/cos截面过圆锥顶点(退化圆锥曲线)/2时,曲线是一点;=时,曲线是两条重合直线;0时,曲线是两条相交直线统一的定义(轨迹的观点)平面上一个动点到一个定点和一条定直线的距离之比是一个常数e,动点的轨迹叫做圆锥曲线这个
12、定点叫做焦点,定直线叫做准线常数e叫做离心率当e1时是双曲线;当e=1时是抛物线统一的方程极坐标方程以焦点为极点,过焦点作准线的垂线,取焦点与垂足连线的反向延长线为极轴,建立极坐标系直角坐标方程圆锥曲线的直角坐标方程都是二次方程,因此,圆锥曲线又称二次曲线。如果以焦点为原点,过焦点作准线的垂线,取焦点与垂足连线的反向延长线为x轴,建立直角坐标系,则圆锥曲线的直角坐标方程为其中p为焦点到准线的距离,e为离心率.下同以上三种统一性都是根本的,它们导致圆锥曲线有很多类似性质,这些类似性质又使得它们能作为一个整体广泛应用于共同领域,尤其是推动了天文学、力学和光学等学科的发展。因此圆锥曲线的统一性还应理
13、解为统一的性质、统一的应用。例如,光学反射定律如果光源放在抛物镜面的焦点上,则其光线经过抛物面反射后,都平行于抛物面的轴射出;反之,亦然。如果光源放在椭圆(双曲)镜面的一个焦点上,则其光线经过镜面反射后,都汇聚于另一个焦点(就像是从另一个焦点射出一样);反之,亦然。光学反射定律其实反映的就是三种圆锥曲线的一些类似性质。抛物线上一点的焦半径与过该点平行于对称轴的直线之间的夹角被抛物线在该点的法线所平分;椭圆(双曲线)上一点的两条焦半径的夹角被椭圆(双曲线)在该点的法线(切线)所平分.又如,18世纪力学研究得出:凡是万有引力场中运动的物体,其轨迹都是圆锥曲线;由于运动体的初始条件不同,它们取相应不
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 平面 解析几何
限制150内